scholarly journals Dynamic nanoimaging of extended objects via hard X-ray multiple-shot coherent diffraction with projection illumination optics

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yuki Takayama ◽  
Keizo Fukuda ◽  
Motoki Kawashima ◽  
Yuki Aoi ◽  
Daiki Shigematsu ◽  
...  

AbstractThe quest for understanding the structural mechanisms of material properties and biological cell functions has led to the active development of coherent diffraction imaging (CDI) and its variants in the hard X-ray regime. Herein, we propose multiple-shot CDI, a full-field CDI technique dedicated to the visualisation of local nanostructural dynamics in extended objects at a spatio-temporal resolution beyond that of current instrumentation limitations. Multiple-shot CDI reconstructs a “movie” of local dynamics from time-evolving diffraction patterns, which is compatible with a robust scanning variant, ptychography. We developed projection illumination optics to produce a probe with a well-defined illumination area and a phase retrieval algorithm, establishing a spatio-temporal smoothness constraint for the reliable reconstruction of dynamic images. The numerical simulations and proof-of-concept experiment using synchrotron hard X-rays demonstrated the capability of visualising a dynamic nanostructured object at a frame rate of 10 Hz or higher.

2015 ◽  
Vol 48 (1) ◽  
pp. 269-272 ◽  
Author(s):  
Christopher K. Egan ◽  
Simon D. M. Jacques ◽  
Matthew D. Wilson ◽  
Matthew C. Veale ◽  
Paul Seller ◽  
...  

A laboratory instrument with the ability to spatially resolve energy-dispersed X-ray powder diffraction patterns taken in a single snapshot has been developed. The experimental arrangement is based on a pinhole camera coupled with a pixelated spectral X-ray detector. Collimation of the diffracted beam is defined by the area of the footprint of a detector pixel and the diameter of the pinhole aperture. Each pixel in the image, therefore, contains an energy-dispersed powder diffraction pattern. This new X-ray imaging technique enables spatial mapping of crystallinity, crystalline texture or crystalline phases from within a sample. Validation of the method has been carried out with a back-to-back comparison with crystalline texture mapping local to a friction stir weld in an aluminium alloy taken using synchrotron radiation.


2020 ◽  
Vol 27 (1) ◽  
pp. 134-145 ◽  
Author(s):  
Giovanni Fevola ◽  
Erik Bergbäck Knudsen ◽  
Tiago Ramos ◽  
Dina Carbone ◽  
Jens Wenzel Andreasen

Coherent diffractive imaging (CDI) experiments are adequately simulated assuming the thin sample approximation and using a Fresnel or Fraunhofer wavefront propagator to obtain the diffraction pattern. Although this method is used in wave-based or hybrid X-ray simulators, here the applicability and effectiveness of an alternative approach that is based solely on ray tracing of Huygens wavelets are investigated. It is shown that diffraction fringes of a grating-like source are accurately predicted and that diffraction patterns of a ptychography dataset from an experiment with realistic parameters can be sampled well enough to be retrieved by a standard phase-retrieval algorithm. Potentials and limits of this approach are highlighted. It is suggested that it could be applied to study imperfect or non-standard CDI configurations lacking a satisfactory theoretical formulation. The considerable computational effort required by this method is justified by the great flexibility provided for easy simulation of a large-parameter space.


2019 ◽  
Vol 75 (2) ◽  
pp. 239-259 ◽  
Author(s):  
J. P. J. Chen ◽  
J. J. Donatelli ◽  
K. E. Schmidt ◽  
R. A. Kirian

Diffraction patterns from small protein crystals illuminated by highly coherent X-rays often contain measurable interference signals between Bragg peaks. This coherent `shape transform' signal introduces enough additional information to allow the molecular densities to be determined from the diffracted intensities directly, without prior information or resolution restrictions. However, the various correlations amongst molecular occupancies/vacancies at the crystal surface result in a subtle yet critical problem in shape transform phasing whereby the sublattices of symmetry-related molecules exhibit a form of partial coherence amongst lattice sites when an average is taken over many crystal patterns. Here an iterative phase retrieval algorithm is developed which is capable of treating this problem; it is demonstrated on simulated data.


1999 ◽  
Vol 32 (5) ◽  
pp. 924-933 ◽  
Author(s):  
A. R. Lang ◽  
A. P. W. Makepeace ◽  
J. E. Butler

Optical microscopic and goniometric measurements were combined with microradiography, diffraction-pattern analysis and topography to study a 2 mm thick [001]-texture CVD (chemical vapour deposition) diamond film that had developed a coarse-grained structure composed of separate columnar crystallites. Individual columns were capped by large (001) facets, with widths up to 0.5 mm, and which were smooth but not flat, whereas the column sides were morphologically irregular. The refractive deviation of X-rays transmitted through the crystallites was exploited for delineating facet edges, thereby facilitating the controlled positioning of small-cross-section X-ray beams used for recording diffraction patterns from selected volumes in two representative crystallites. Their structure consisted of a [001]-axial core column surrounded by columns in twin orientation with respect to the core. The diamond volume directly below the (001) facets was free from low-angle boundaries, and no dislocation outcrops on the facets were detected. Significant elastic deformation of this volume was only present close to the facet periphery, where misorientations reached a few milliradians. Lattice imperfection was high in the twins, with ∼1° misorientations.


2016 ◽  
Vol 23 (5) ◽  
pp. 1210-1215 ◽  
Author(s):  
Jonathan Logan ◽  
Ross Harder ◽  
Luxi Li ◽  
Daniel Haskel ◽  
Pice Chen ◽  
...  

Recent progress in the development of dichroic Bragg coherent diffractive imaging, a new technique for simultaneous three-dimensional imaging of strain and magnetization at the nanoscale, is reported. This progress includes the installation of a diamond X-ray phase retarder at beamline 34-ID-C of the Advanced Photon Source. The performance of the phase retarder for tuning X-ray polarization is demonstrated with temperature-dependent X-ray magnetic circular dichroism measurements on a gadolinium foil in transmission and on a Gd5Si2Ge2crystal in diffraction geometry with a partially coherent, focused X-ray beam. Feasibility tests for dichroic Bragg coherent diffractive imaging are presented. These tests include (1) using conventional Bragg coherent diffractive imaging to determine whether the phase retarder introduces aberrations using a nonmagnetic gold nanocrystal as a control sample, and (2) collecting coherent diffraction patterns of a magnetic Gd5Si2Ge2nanocrystal with left- and right-circularly polarized X-rays. Future applications of dichroic Bragg coherent diffractive imaging for the correlation of strain and lattice defects with magnetic ordering and inhomogeneities are considered.


Author(s):  
Kannan M. Krishnan

X-rays diffraction is fundamental to understanding the structure and crystallography of biological, geological, or technological materials. X-rays scatter predominantly by the electrons in solids, and have an elastic (coherent, Thompson) and an inelastic (incoherent, Compton) component. The atomic scattering factor is largest (= Z) for forward scattering, and decreases with increasing scattering angle and decreasing wavelength. The amplitude of the diffracted wave is the structure factor, F hkl, and its square gives the intensity. In practice, intensities are modified by temperature (Debye-Waller), absorption, Lorentz-polarization, and the multiplicity of the lattice planes involved in diffraction. Diffraction patterns reflect the symmetry (point group) of the crystal; however, they are centrosymmetric (Friedel law) even if the crystal is not. Systematic absences of reflections in diffraction result from glide planes and screw axes. In polycrystalline materials, the diffracted beam is affected by the lattice strain or grain size (Scherrer equation). Diffraction conditions (Bragg Law) for a given lattice spacing can be satisfied by varying θ or λ — for study of single crystals θ is fixed and λ is varied (Laue), or λ is fixed and θ varied to study powders (Debye-Scherrer), polycrystalline materials (diffractometry), and thin films (reflectivity). X-ray diffraction is widely applied.


1989 ◽  
Vol 33 ◽  
pp. 389-396 ◽  
Author(s):  
Y. Yoshioka ◽  
T. Shinkai ◽  
S. Ohya

The development of linear position-sensitive detectors (PSD) has resulted in a large reduction of data acquisition times in the field of x-ray stress analysis. However, we also require two-dimensional (2-D) diffraction patterns for material evaluation. Especially, the microbeam x-ray diffraction technique gives valuable information on the structure of crystalline materials and this technique has been applied to fracture analysis by x-rays. Many kinds of 2-D PSD have been developed that have insufficient spatial resolution. So x-ray film has still been used as a 2-D detector, but it requires relatively long exposure times and then the process after exposure is very troublesome.


1963 ◽  
Vol 7 ◽  
pp. 1-13 ◽  
Author(s):  
Volkmar Gerold ◽  
Heinz Auer ◽  
Winfried Merz

AbstractThe formation of the spherical Guinier—Preston zones in an aluminum-silver alloy is governed by a metastable miscibility gap, which consists of two different sections. The lower section occurs below 170°C (η state), the higher section up to 420°C (∊ state). The zones in the two sections differ in their silver concentration and in their atomic order. To prove the change in order, a combination of X-ray small-angle scattering and electric resistivity measurements was used. As the resistivity depends on the zone size and the atomic order, the change in order can be found when the zone size is known. This size was measured by the X-ray technique. To complete the results, X-rays ingle-crystal diffraction patterns with monochromatic radiation were taken at different stages. According to these patterns, three different states must be distinguished.The η′ state exists at room temperature after quenching from 550°C. The silver atoms prefer a layered arrangement in the zones, which is not very stable. It is destroyed after short annealings above 100°C. The η state is developed during annealing below 170°C. A three-dimensional atomic order is built up with increasing zone size, which results in a marked decrease in the resistivity. For the ∊ state (above 170°C), a nearly random atomic distribution exists. Step-quenching experiments prove that the ordered η state can also be developed at room temperature.


Sign in / Sign up

Export Citation Format

Share Document