scholarly journals Coherently amplifying photon production from vacuum with a dense cloud of accelerating photodetectors

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Hui Wang ◽  
Miles Blencowe

AbstractAn accelerating photodetector is predicted to see photons in the electromagnetic vacuum. However, the extreme accelerations required have prevented the direct experimental verification of this quantum vacuum effect. In this work, we consider many accelerating photodetectors that are contained within an electromagnetic cavity. We show that the resulting photon production from the cavity vacuum can be collectively enhanced such as to be measurable. The combined cavity-photodetectors system maps onto a parametrically driven Dicke-type model; when the detector number exceeds a certain critical value, the vacuum photon production undergoes a phase transition from a normal phase to an enhanced superradiant-like, inverted lasing phase. Such a model may be realized as a mechanical membrane with a dense concentration of optically active defects undergoing gigahertz flexural motion within a superconducting microwave cavity. We provide estimates suggesting that recent related experimental devices are close to demonstrating this inverted, vacuum photon lasing phase.

2021 ◽  
Author(s):  
Hui Wang ◽  
Miles Blencowe

Abstract We consider N>>1 accelerating (i.e., oscillating) photodetectors modeled as two level systems (TLSs) that are contained within a microwave cavity and show that the resulting photon production from vacuum can be collectively enhanced such as to be measurable. The cavity-accelerating TLSs system maps onto a parametrically driven Dicke-type model and when the detector number N exceeds a certain critical value, the vacuum photon production undergoes a phase transition from a normal phase to an enhanced superradiant-like, inverted lasing phase. Such a model may be realized as a mechanical membrane with a dense concentration of optically active defects undergoing GHz flexural motion and contained within a 3D, superconducting microwave cavity. We show that recent related experimental devices are close to demonstrating this inverted, vacuum photon lasing phase.


2019 ◽  
Vol 198 ◽  
pp. 00011
Author(s):  
Z. Sakhi ◽  
A. Chentouf ◽  
M. Bennai

We consider a set of two level atoms interacting with a single quantized bosonic mode governed by the Dicke model. In this model it is well known that under a critical value of the light-matter coupling a spontaneous radiation process takes place. In the present work, we investigate the dynamics of the system and we study the Wigner distribution function to visualize the effect of the minimal coupling on the ground state wavefunction from the normal phase to the superradiant one. We show also that the entanglement of Bi-partite model is limited by the presence of the diamagnetic term.


1979 ◽  
Vol 70 (4) ◽  
pp. 263-265 ◽  
Author(s):  
V.N. Melnikov ◽  
S.V. Orlov
Keyword(s):  

2001 ◽  
Vol 695 ◽  
Author(s):  
Ming-Hao Zhao ◽  
Ran Fu ◽  
Tong-Yi Zhang

ABSTRACTThe present work proposes a Dugdale type model to theoretically predict the multiple cracks of a residually tensile stressed thin film on a ductile substrate. The results show that there exists a critical value, Rc, of the cracking resistance number, R. When R < R, the film > c cracks and the normalized crack spacing is determined by cracking resistance number and the stress ratio of the residual stress to the yield strength of the substrate.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
A Landreau ◽  
S Bertrand ◽  
C Simoes-Pires ◽  
L Marcourt ◽  
TD Bach ◽  
...  

TAPPI Journal ◽  
2012 ◽  
Vol 11 (8) ◽  
pp. 51-58
Author(s):  
ANTTI HAAPALA ◽  
MIKA KÖRKKÖ ◽  
ELISA KOIVURANTA ◽  
JOUKO NIINIMÄKI

Analysis methods developed specifically to determine the presence of ink and other optically active components in paper machine white waters or other process effluents are not available. It is generally more interest¬ing to quantify the effect of circulation water contaminants on end products. This study compares optical techniques to quantify the dirt in process water by two methods for test media preparation and measurement: direct process water filtration on a membrane foil and low-grammage sheet formation. The results show that ink content values obtained from various analyses cannot be directly compared because of fundamental issues involving test media preparation and the varied methodologies used to formulate the results, which may be based on different sets of assumptions. The use of brightness, luminosity, and reflectance and the role of scattering measurements as a part of ink content analysis are discussed, along with fine materials retention and measurement media selection. The study concludes with practical tips for case-dependent measurement methodology selection.


2014 ◽  
Vol 134 (9) ◽  
pp. 1269-1270 ◽  
Author(s):  
Hiroki Noma ◽  
Shun Tanabe ◽  
Takao Sato ◽  
Nozomu Araki ◽  
Yasuo Konishi

Sign in / Sign up

Export Citation Format

Share Document