scholarly journals Coherently amplifying photon production from vacuum with a dense cloud of accelerating photodetectors

Author(s):  
Hui Wang ◽  
Miles Blencowe

Abstract We consider N>>1 accelerating (i.e., oscillating) photodetectors modeled as two level systems (TLSs) that are contained within a microwave cavity and show that the resulting photon production from vacuum can be collectively enhanced such as to be measurable. The cavity-accelerating TLSs system maps onto a parametrically driven Dicke-type model and when the detector number N exceeds a certain critical value, the vacuum photon production undergoes a phase transition from a normal phase to an enhanced superradiant-like, inverted lasing phase. Such a model may be realized as a mechanical membrane with a dense concentration of optically active defects undergoing GHz flexural motion and contained within a 3D, superconducting microwave cavity. We show that recent related experimental devices are close to demonstrating this inverted, vacuum photon lasing phase.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Hui Wang ◽  
Miles Blencowe

AbstractAn accelerating photodetector is predicted to see photons in the electromagnetic vacuum. However, the extreme accelerations required have prevented the direct experimental verification of this quantum vacuum effect. In this work, we consider many accelerating photodetectors that are contained within an electromagnetic cavity. We show that the resulting photon production from the cavity vacuum can be collectively enhanced such as to be measurable. The combined cavity-photodetectors system maps onto a parametrically driven Dicke-type model; when the detector number exceeds a certain critical value, the vacuum photon production undergoes a phase transition from a normal phase to an enhanced superradiant-like, inverted lasing phase. Such a model may be realized as a mechanical membrane with a dense concentration of optically active defects undergoing gigahertz flexural motion within a superconducting microwave cavity. We provide estimates suggesting that recent related experimental devices are close to demonstrating this inverted, vacuum photon lasing phase.


2009 ◽  
Vol 87 (10) ◽  
pp. 1425-1435 ◽  
Author(s):  
Taunia L. L. Closson ◽  
Marc R. Roussel

When the anisotropy of a harmonic ion trap is increased, the ions eventually collapse into a two-dimensional structure consisting of concentric shells of ions. This collapse generally behaves like a second-order phase transition. A graph of the critical value of the anisotropy parameter vs. the number of ions displays substructure closely related to the inner-shell configurations of the clusters. The critical exponent for the order parameter of this phase transition (maximum extent in the z direction) was found computationally to have the value β = 1/2. A second critical exponent related to displacements perpendicular to the z axis was found to have the value δ = 1. Using these estimates of the critical exponents, we derive an equation that relates the amplitudes of the displacements of the ions parallel to the x–y plane to the amplitudes along the z axis during the flattening process.


1993 ◽  
Vol 328 ◽  
Author(s):  
Boris E. Vugmeister ◽  
Michelle S. Malcuit ◽  
John C. Kralik ◽  
Colleen Stevens

ABSTRACTWe investigate the pretransitional behavior in laser-induced alignment of rigid rod-like polytetraflouroethylene (PTFE) suspensions. Using a laser-induced birefringence experiment, we measure both the orientational order parameter and the orientational relaxation time. We find that both increase as the volume fraction of colloidal particles approaches the critical value for the isotropic-nematic phase transition. Experimental results are compared with theory which takes into account the possibility of a first-order phase transition induced by a laser electric field.


1997 ◽  
Vol 07 (04) ◽  
pp. 917-922
Author(s):  
Seon Hee Park ◽  
Seunghwan Kim ◽  
Seung Kee Han

The Nonequilibrium phenomena in a class of globally coupled phase oscillators systems with multiplicative noise are studied. It is shown that at the critical value of the noise intensity the systems undergo a phase transition and converge to clustered states. We also show that the time delay in the interaction between oscillators gives rise to the switching phenomena of clusters. These phenomena are noise-induced effects which cannot be seen in the deterministic systems or in the simple additive noise models.


2013 ◽  
Vol 28 (28) ◽  
pp. 1350140 ◽  
Author(s):  
WUNG-HONG HUANG

We use the matching method to investigate the first-order phase transition in holographic superconductor and superfluid. We first use the simple holographic superconductor model to describe the matching method and mention how to see the first-order phase transition. Next, we study the holographic superconductor with Stückelberg term and see that the analytic results indicate the existence of first-order phase transition. Finally, we study the holographic superfluid and show that the first-order phase transition can be found for some values of parameters. We determine the critical value analytically and compare it with the previous numerical result.


Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1137 ◽  
Author(s):  
Abdel-Baset A. Mohamed ◽  
Hichem Eleuch ◽  
Abdel-Shafy F. Obada

In this paper, we investigate the dynamics of two coupled two-level systems (or qubits) that are resonantly interacting with a microwave cavity. We examine the effects of the intrinsic decoherence rate and the coupling between the two qubits on the non-classicality of different system partitions via quasi-probability functions. New definitions for the partial Q-function and its Wehrl entropy are used to investigate the information and the quantum coherence of the phase space. The amount of the quantum coherence and non-classicality can be appropriately tuned by suitably adopting the rates of the intrinsic-decoherence and the coupling between the two qubits. The intrinsic decoherence has a pronounced effect on the negativity and the positivity of the Wigner function. The coupling between the two qubits can control the negativity and positivity of the quasi-probability functions.


1999 ◽  
Vol 83 (22) ◽  
pp. 4622-4625 ◽  
Author(s):  
B. F. Woodfield ◽  
D. A. Wright ◽  
R. A. Fisher ◽  
N. E. Phillips ◽  
H. Y. Tang

1977 ◽  
Vol 32 (1) ◽  
pp. 33-39
Author(s):  
Fred Fischer

Abstract A solid elastic skin on a liquid surface aquires a periodic ripple formation when a compressive strain surpasses a critical value. From a calculation the ripple wavelength is found to be proportional to the 3/4th power of the skin thickness. This instability can be described as a kind of second order phase transition, where a relative amplitude of the ripple wave is the order parameter. In addition, when the skin area is abruptly compressed the ripple wavelength depends on the magnitude of the compressive strain. Examples for skin rippling with wavelengths between 10 μm and 100 m are discussed.


2019 ◽  
Vol 198 ◽  
pp. 00011
Author(s):  
Z. Sakhi ◽  
A. Chentouf ◽  
M. Bennai

We consider a set of two level atoms interacting with a single quantized bosonic mode governed by the Dicke model. In this model it is well known that under a critical value of the light-matter coupling a spontaneous radiation process takes place. In the present work, we investigate the dynamics of the system and we study the Wigner distribution function to visualize the effect of the minimal coupling on the ground state wavefunction from the normal phase to the superradiant one. We show also that the entanglement of Bi-partite model is limited by the presence of the diamagnetic term.


Sign in / Sign up

Export Citation Format

Share Document