scholarly journals Poleward eddy-induced warm water transport across a shelf break off Totten Ice Shelf, East Antarctica

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Daisuke Hirano ◽  
Kohei Mizobata ◽  
Hiroko Sasaki ◽  
Hiroto Murase ◽  
Takeshi Tamura ◽  
...  

AbstractIce mass loss in the Wilkes Land sector of East Antarctica and the Amundsen and Bellingshausen Sea sectors of West Antarctica has contributed to a rise in sea levels over several decades. The massive continental ice behind the Totten Ice Shelf, equivalent to a few meters of sea-level rise, is grounded well below sea level and therefore, potentially vulnerable to oceanic heat. Here, we present analyses of comprehensive hydrographic observations at the continental slope and shelf break regions off Totten Ice Shelf. We provide robust evidence that the relatively warm Circumpolar Deep Water that originates at intermediate depths in the Antarctic Circumpolar Current is transported efficiently towards the shelf break by multiple cyclonic eddies. We propose that these semi-permanent cyclonic circulations play a critical role in transporting the available ocean heat towards Totten Ice Shelf, and melting it from underneath, thus eventually influencing the global climate.

Author(s):  
Eric Rignot

The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1 m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 °C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.


2020 ◽  
pp. 1-11
Author(s):  
Emily A. Hill ◽  
G. Hilmar Gudmundsson ◽  
J. Rachel Carr ◽  
Chris R. Stokes ◽  
Helen M. King

Abstract Ice shelves restrain flow from the Greenland and Antarctic ice sheets. Climate-ocean warming could force thinning or collapse of floating ice shelves and subsequently accelerate flow, increase ice discharge and raise global mean sea levels. Petermann Glacier (PG), northwest Greenland, recently lost large sections of its ice shelf, but its response to total ice shelf loss in the future remains uncertain. Here, we use the ice flow model Úa to assess the sensitivity of PG to changes in ice shelf extent, and to estimate the resultant loss of grounded ice and contribution to sea level rise. Our results have shown that under several scenarios of ice shelf thinning and retreat, removal of the shelf will not contribute substantially to global mean sea level (<1 mm). We hypothesize that grounded ice loss was limited by the stabilization of the grounding line at a topographic high ~12 km inland of its current grounding line position. Further inland, the likelihood of a narrow fjord that slopes seawards suggests that PG is likely to remain insensitive to terminus changes in the near future.


2014 ◽  
Vol 8 (5) ◽  
pp. 1699-1710 ◽  
Author(s):  
H. Seroussi ◽  
M. Morlighem ◽  
E. Rignot ◽  
J. Mouginot ◽  
E. Larour ◽  
...  

Abstract. Pine Island Glacier, a major contributor to sea level rise in West Antarctica, has been undergoing significant changes over the last few decades. Here, we employ a three-dimensional, higher-order model to simulate its evolution over the next 50 yr in response to changes in its surface mass balance, the position of its calving front and ocean-induced ice shelf melting. Simulations show that the largest climatic impact on ice dynamics is the rate of ice shelf melting, which rapidly affects the glacier speed over several hundreds of kilometers upstream of the grounding line. Our simulations show that the speedup observed in the 1990s and 2000s is consistent with an increase in sub-ice-shelf melting. According to our modeling results, even if the grounding line stabilizes for a few decades, we find that the glacier reaction can continue for several decades longer. Furthermore, Pine Island Glacier will continue to change rapidly over the coming decades and remain a major contributor to sea level rise, even if ocean-induced melting is reduced.


2020 ◽  
Vol 117 (40) ◽  
pp. 24735-24741 ◽  
Author(s):  
Stef Lhermitte ◽  
Sainan Sun ◽  
Christopher Shuman ◽  
Bert Wouters ◽  
Frank Pattyn ◽  
...  

Pine Island Glacier and Thwaites Glacier in the Amundsen Sea Embayment are among the fastest changing outlet glaciers in West Antarctica with large consequences for global sea level. Yet, assessing how much and how fast both glaciers will weaken if these changes continue remains a major uncertainty as many of the processes that control their ice shelf weakening and grounding line retreat are not well understood. Here, we combine multisource satellite imagery with modeling to uncover the rapid development of damage areas in the shear zones of Pine Island and Thwaites ice shelves. These damage areas consist of highly crevassed areas and open fractures and are first signs that the shear zones of both ice shelves have structurally weakened over the past decade. Idealized model results reveal moreover that the damage initiates a feedback process where initial ice shelf weakening triggers the development of damage in their shear zones, which results in further speedup, shearing, and weakening, hence promoting additional damage development. This damage feedback potentially preconditions these ice shelves for disintegration and enhances grounding line retreat. The results of this study suggest that damage feedback processes are key to future ice shelf stability, grounding line retreat, and sea level contributions from Antarctica. Moreover, they underline the need for incorporating these feedback processes, which are currently not accounted for in most ice sheet models, to improve sea level rise projections.


2016 ◽  
Vol 10 (6) ◽  
pp. 2623-2635 ◽  
Author(s):  
Lionel Favier ◽  
Frank Pattyn ◽  
Sophie Berger ◽  
Reinhard Drews

Abstract. The East Antarctic ice sheet is likely more stable than its West Antarctic counterpart because its bed is largely lying above sea level. However, the ice sheet in Dronning Maud Land, East Antarctica, contains marine sectors that are in contact with the ocean through overdeepened marine basins interspersed by grounded ice promontories and ice rises, pinning and stabilising the ice shelves. In this paper, we use the ice-sheet model BISICLES to investigate the effect of sub-ice-shelf melting, using a series of scenarios compliant with current values, on the ice-dynamic stability of the outlet glaciers between the Lazarev and Roi Baudouin ice shelves over the next millennium. Overall, the sub-ice-shelf melting substantially impacts the sea-level contribution. Locally, we predict a short-term rapid grounding-line retreat of the overdeepened outlet glacier Hansenbreen, which further induces the transition of the bordering ice promontories into ice rises. Furthermore, our analysis demonstrated that the onset of the marine ice-sheet retreat and subsequent promontory transition into ice rise is controlled by small pinning points, mostly uncharted in pan-Antarctic datasets. Pinning points have a twofold impact on marine ice sheets. They decrease the ice discharge by buttressing effect, and they play a crucial role in initialising marine ice sheets through data assimilation, leading to errors in ice-shelf rheology when omitted. Our results show that unpinning increases the sea-level rise by 10 %, while omitting the same pinning point in data assimilation decreases it by 10 %, but the more striking effect is in the promontory transition time, advanced by two centuries for unpinning and delayed by almost half a millennium when the pinning point is missing in data assimilation. Pinning points exert a subtle influence on ice dynamics at the kilometre scale, which calls for a better knowledge of the Antarctic margins.


2018 ◽  
Vol 12 (12) ◽  
pp. 3861-3876 ◽  
Author(s):  
Hongju Yu ◽  
Eric Rignot ◽  
Helene Seroussi ◽  
Mathieu Morlighem

Abstract. Thwaites Glacier (TG), West Antarctica, has experienced rapid, potentially irreversible grounding line retreat and mass loss in response to enhanced ice shelf melting. Results from recent numerical models suggest a large spread in the evolution of the glacier in the coming decades to a century. It is therefore important to investigate how different approximations of the ice stress balance, parameterizations of basal friction and ice shelf melt parameterizations may affect projections. Here, we simulate the evolution of TG using ice sheet models of varying levels of complexity, different basal friction laws and ice shelf melt to quantify their effect on the projections. We find that the grounding line retreat and its sensitivity to ice shelf melt are enhanced when a full-Stokes model is used, a Budd friction is used and ice shelf melt is applied on partially floating elements. Initial conditions also impact the model results. Yet, all simulations suggest a rapid, sustained retreat of the glacier along the same preferred pathway. The fastest retreat rate occurs on the eastern side of the glacier, and the slowest retreat occurs across a subglacial ridge on the western side. All the simulations indicate that TG will undergo an accelerated retreat once the glacier retreats past the western subglacial ridge. Combining all the simulations, we find that the uncertainty of the projections is small in the first 30 years, with a cumulative contribution to sea level rise of 5 mm, similar to the current rate. After 30 years, the contribution to sea level depends on the model configurations, with differences up to 300 % over the next 100 years, ranging from 14 to 42 mm.


2020 ◽  
Author(s):  
Sarah Feron ◽  
Raul Cordero

&lt;p&gt;Surface Melt (SM) is one of the factors that contribute to sea level rise; surface&amp;#160;meltwater draining through the ice and beneath&amp;#160;Antarctic&amp;#160;glaciers may cause acceleration in their flow towards the sea. Changes in the frequency of relatively warm days (including heatwaves) can substantially alter the SM variability, thus leading to extreme melting events.&amp;#160;By using simulations from 13 Global Climate Models (GCMs) and according to a moderate representative concentration pathways (RCP4.5), here we show that the frequency of extreme SM events (SM90; according to the 90th percentile over the reference period 1961-1990) may significantly increase in coastal areas of West Antarctica; in particular in the Antarctic Peninsula. By the end of the century SM90 estimates are expected to increase from currently 0.10 kg/m2/day to about 0.45 kg/m2/day in the Antarctic Peninsula. Increments in SM90 estimates are not just driven by changes in the average SM, but also by the variability in SM. The latter is expected to increase by around 50% in the Antarctic Peninsula.&lt;/p&gt;


2018 ◽  
Author(s):  
Michael J. Wolovick ◽  
John C. Moore

Abstract. The Marine Ice Sheet Instability (MISI) is a dynamic feedback that can cause an ice sheet to enter a runaway collapse. Thwaites Glacier, West Antarctica, is the largest individual source of future sea level rise and may have already entered the MISI. Here, we use a suite of coupled ice–ocean flowband simulations to explore whether targeted geoengineering using an artificial sill or artificial ice rises could counter a collapse. Successful interventions occur when the floating ice shelf regrounds on the pinning points, increasing buttressing and reducing ice flux across the grounding line. Regrounding is more likely with a continuous sill that is able to block warm water transport to the grounding line. The smallest design we consider is comparable in scale to existing civil engineering projects but has only a 30 % success rate, while larger designs are more effective. There are multiple possible routes forward to improve upon the designs that we considered, and with decades or more to research designs it is plausible that the scientific community could come up with a plan that was both effective and achievable. While reducing emissions remains the short-term priority for minimizing the effects of climate change, in the long run humanity may need to develop contingency plans to deal with an ice sheet collapse.


2020 ◽  
Author(s):  
Eelco Rohling ◽  
Fiona Hibbert

&lt;p&gt;Sea-level rise is among the greatest risks that arise from anthropogenic global climate change. It is receiving a lot of attention, among others in the IPCC reports, but major questions remain as to the potential contribution from the great continental ice sheets. In recent years, some modelling work has suggested that the ice-component of sea-level rise may be much faster than previously thought, but the rapidity of rise seen in these results depends on inclusion of scientifically debated mechanisms of ice-shelf decay and associated ice-sheet instability. The processes have not been active during historical times, so data are needed from previous warm periods to evaluate whether the suggested rates of sea-level rise are supported by observations or not. Also, we then need to assess which of the ice sheets was most sensitive, and why. The last interglacial (LIG; ~130,000 to ~118,000 years ago, ka) was the last time global sea level rose well above its present level, reaching a highstand of +6 to +9 m or more. Because Greenland Ice Sheet (GrIS) contributions were smaller than that, this implies substantial Antarctic Ice Sheet (AIS) contributions. However, this still leaves the timings, magnitudes, and drivers of GrIS and AIS reductions open to debate. I will discuss recently published sea-level reconstructions for the LIG highstand, which reveal that AIS and GrIS contributions were distinctly asynchronous, and that rates of rise to values above 0 m (present-day sea level) reached up to 3.5 m per century. Such high pre-anthropogenic rates of sea-level rise lend credibility to high rates inferred by ice modelling under certain ice-shelf instability parameterisations, for both the past and future. Climate forcing was distinctly asynchronous between the southern and northern hemispheres as well during the LIG, explaining the asynchronous sea-level contributions from AIS and GrIS. Today, climate forcing is synchronous between the two hemispheres, and also faster and greater than during the LIG. Therefore, LIG rates of sea-level rise should likely be considered minimum estimates for the future.&lt;/p&gt;


2020 ◽  
Author(s):  
Violaine Coulon ◽  
Kevin Bulthuis ◽  
Sainan Sun ◽  
Konstanze Haubner ◽  
Frank Pattyn

&lt;p&gt;The Antarctic ice sheet (AIS) lies on a solid Earth that displays large spatial variations in rheological properties, with a thin lithosphere and low-viscosity upper mantle (weak Earth structure) beneath West Antarctica and an opposing structure beneath East Antarctica. This contrast is known to have a significant impact on ice-sheet grounding-line stability. Here, we embedded a modified glacial-isostatic ELRA model within an Antarctic ice sheet model that considers a weak Earth structure for West Antarctica supplemented with an approximation of gravitationally-consistent local sea-level changes. By taking advantage of the computational efficiency of this elementary GIA model, we assess in a probabilistic way the impact of uncertainties in the Antarctic viscoelastic properties on the response of the Antarctic ice sheet to future warming by using an ensemble of 2000 Monte Carlo simulations that span a range of plausible solid Earth structures for both West and East Antarctica. &lt;br&gt;We show that on multicentennial-to-millennial timescales, model projections that do not consider the dichotomy between East and West Antarctic solid Earth structures systematically overestimate the sea-level contribution from the Antarctic ice sheet because regional solid-Earth deformation plays a significant role in promoting the stability of the West Antarctic ice sheet (WAIS). However, WAIS collapse cannot be prevented under high-emissions climate scenarios. At longer timescales and under unabated climate forcing, future mass loss may be underestimated because in East Antarctica, GIA feedbacks have the potential to re-enforce the influence of the climate forcing as compared with a spatially-uniform GIA model. In this context, the AIS response might be an even larger source of uncertainty in projecting sea-level rise than previously thought, with the highest uncertainty arising from the East Antarctic ice sheet where the Aurora Basin is very GIA-dependent.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document