scholarly journals Activation and clinical significance of the unfolded protein response in breast cancer

2009 ◽  
Vol 101 (10) ◽  
pp. 1692-1698 ◽  
Author(s):  
P Scriven ◽  
S Coulson ◽  
R Haines ◽  
S Balasubramanian ◽  
S Cross ◽  
...  
2020 ◽  
Vol 20 (1) ◽  
pp. 11-25
Author(s):  
Balkees Abderrahman ◽  
Philipp Y. Maximov ◽  
Ramona F. Curpan ◽  
Sean W. Fanning ◽  
Jay S. Hanspal ◽  
...  

2018 ◽  
Vol 215 (11) ◽  
pp. 2833-2849 ◽  
Author(s):  
Wenyu Wang ◽  
Gokce Oguz ◽  
Puay Leng Lee ◽  
Yi Bao ◽  
Panpan Wang ◽  
...  

PTEN deficiency in breast cancer leads to resistance to PI3K–AKT inhibitor treatment despite aberrant activation of this signaling pathway. Here, we report that genetic depletion or small molecule inhibition of KDM4B histone demethylase activates the unfolded protein response (UPR) pathway and results in preferential apoptosis in PTEN-deficient triple-negative breast cancers (TNBCs). Intriguingly, this function of KDM4B on UPR requires its demethylase activity but is independent of its canonical role in histone modification, and acts through its cytoplasmic interaction with eIF2α, a crucial component of UPR signaling, resulting in reduced phosphorylation of this component. Targeting KDM4B in combination with PI3K inhibition induces further activation of UPR, leading to robust synergy in apoptosis. These findings identify KDM4B as a therapeutic vulnerability in PTEN-deficient TNBC that otherwise would be resistant to PI3K inhibition.


2019 ◽  
Vol 20 (4) ◽  
pp. 857 ◽  
Author(s):  
Lorenza Sisinni ◽  
Michele Pietrafesa ◽  
Silvia Lepore ◽  
Francesca Maddalena ◽  
Valentina Condelli ◽  
...  

The unfolded protein response (UPR) is a stress response activated by the accumulation of unfolded or misfolded proteins in the lumen of the endoplasmic reticulum (ER) and its uncontrolled activation is mechanistically responsible for several human pathologies, including metabolic, neurodegenerative, and inflammatory diseases, and cancer. Indeed, ER stress and the downstream UPR activation lead to changes in the levels and activities of key regulators of cell survival and autophagy and this is physiologically finalized to restore metabolic homeostasis with the integration of pro-death or/and pro-survival signals. By contrast, the chronic activation of UPR in cancer cells is widely considered a mechanism of tumor progression. In this review, we focus on the relationship between ER stress, apoptosis, and autophagy in human breast cancer and the interplay between the activation of UPR and resistance to anticancer therapies with the aim to disclose novel therapeutic scenarios. The hypothesis that autophagy and UPR may provide novel molecular targets in human malignancies is discussed.


Author(s):  
Robert Clarke ◽  
Ayesha N. Shajahan ◽  
Yue Wang ◽  
John J. Tyson ◽  
Rebecca B. Riggins ◽  
...  

AbstractLack of understanding of endocrine resistance remains one of the major challenges for breast cancer researchers, clinicians, and patients. Current reductionist approaches to understanding the molecular signaling driving resistance have offered mostly incremental progress over the past 10 years. As the field of systems biology has begun to mature, the approaches and network modeling tools being developed and applied therein offer a different way to think about how molecular signaling and the regulation of crucial cellular functions are integrated. To gain novel insights, we first describe some of the key challenges facing network modeling of endocrine resistance, many of which arise from the properties of the data spaces being studied. We then use activation of the unfolded protein response (UPR) following induction of endoplasmic reticulum stress in breast cancer cells by antiestrogens, to illustrate our approaches to computational modeling. Activation of UPR is a key determinant of cell fate decision-making and regulation of autophagy and apoptosis. These initial studies provide insight into a small subnetwork topology obtained using differential dependency network analysis and focused on the UPR gene XBP1. The XBP1 subnetwork topology incorporates BCAR3, BCL2, BIK, NF-κB, and other genes as nodes; the connecting edges represent the dependency structures among these nodes. As data from ongoing cellular and molecular studies become available, we will build detailed mathematical models of this XBP1-UPR network.


Cancers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 344 ◽  
Author(s):  
Eoghan McGrath ◽  
Susan Logue ◽  
Katarzyna Mnich ◽  
Shane Deegan ◽  
Richard Jäger ◽  
...  

In 2018, in the US alone, it is estimated that 268,670 people will be diagnosed with breast cancer, and that 41,400 will die from it. Since breast cancers often become resistant to therapies, and certain breast cancers lack therapeutic targets, new approaches are urgently required. A cell-stress response pathway, the unfolded protein response (UPR), has emerged as a promising target for the development of novel breast cancer treatments. This pathway is activated in response to a disturbance in endoplasmic reticulum (ER) homeostasis but has diverse physiological and disease-specific functions. In breast cancer, UPR signalling promotes a malignant phenotype and can confer tumours with resistance to widely used therapies. Here, we review several roles for UPR signalling in breast cancer, highlighting UPR-mediated therapy resistance and the potential for targeting the UPR alone or in combination with existing therapies.


Sign in / Sign up

Export Citation Format

Share Document