scholarly journals A quantitative analysis of the reduction in oxygen levels required to induce up-regulation of vascular endothelial growth factor (VEGF) mRNA in cervical cancer cell lines

1999 ◽  
Vol 80 (10) ◽  
pp. 1518-1524 ◽  
Author(s):  
J A Chiarotto ◽  
R P Hill
1997 ◽  
Vol 17 (9) ◽  
pp. 5629-5639 ◽  
Author(s):  
D Mukhopadhyay ◽  
B Knebelmann ◽  
H T Cohen ◽  
S Ananth ◽  
V P Sukhatme

The von Hippel-Lindau tumor suppressor gene (VHL) has a critical role in the pathogenesis of clear-cell renal cell carcinoma (RCC), as VHL mutations have been found in both von Hippel-Lindau disease-associated and sporadic RCCs. Recent studies suggest that vascular endothelial growth factor (VEGF) mRNA is upregulated in RCC- and von Hippel-Lindau disease-associated tumors. We have therefore assessed the effect of the VHL gene product on VEGF expression. VEGF promoter-luciferase constructs were transiently cotransfected with a wild-type VHL (wt-VHL) vector in several cell lines, including 293 embryonic kidney and RCC cell lines. wt-VHL protein inhibited VEGF promoter activity in a dose-dependent manner up to 5- to 10-fold. Deletion analysis defined a 144-bp region of the VEGF promoter necessary for VHL repression. This VHL-responsive element is GC rich and specifically binds the transcription factor Sp1 in crude nuclear extracts. In Drosophila cells, cotransfected VHL represses Sp1-mediated activation but not basal activity of the VEGF promoter. We next demonstrated in coimmunoprecipitates that VHL and Sp1 were part of the same complex and, by using a glutathione-S-transferase-VHL fusion protein and purified Sp1, that VHL and Sp1 directly interact. Furthermore, endogenous VEGF mRNA levels were suppressed in permanent RCC cell lines expressing wt-VHL, and nuclear run-on studies indicated that VHL regulation of VEGF occurs at least partly at the transcriptional level. These observations support a new mechanism for VHL-mediated transcriptional repression via a direct inhibitory action on Sp1 and suggest that loss of Sp1 inhibition may be important in the pathogenesis of von Hippel-Lindau disease and RCC.


2021 ◽  
Vol 22 (4) ◽  
pp. 1818
Author(s):  
Barbara Vizio ◽  
Ornella Bosco ◽  
Ezio David ◽  
Gian Paolo Caviglia ◽  
Maria Lorena Abate ◽  
...  

Primary thrombopoietic mediator thrombopoietin (THPO) is mainly produced by the liver; it may act as a growth factor for hepatic progenitors. Principal angiogenesis inducer vascular endothelial growth factor-A (VEGF-A) is critical for the complex vascular network within the liver architecture. As a cross-regulatory loop between THPO and VEGF-A has been demonstrated in the hematopoietic system, the two growth factors were hypothesized to cooperatively contribute to the progression from liver cirrhosis (LC) to hepatocellular carcinoma (HCC). The mRNA and protein expression levels of THPO, VEGF-A, and their receptors were examined, compared, and correlated in paired cancerous and LC tissues from 26 cirrhosis-related HCC patients, using qRT-PCR and immunohistochemistry. THPO and VEGF-A were alternatively silenced by small interfering RNA (siRNA) in human liver cancer cell lines Huh7 and HepG2. THPO and VEGF-A expressions significantly increased in tumor versus LC tissues. HCC and paired LC cells expressed similar levels of THPO receptor (R), whereas vascular endothelial growth factor receptor (VEGFR) -1 and VEGFR-2 levels were higher in HCC than in corresponding LC tissue samples. A significant linear correlation emerged between THPO and VEGF-A transcripts in HCC and, at the protein level, THPO and THPOR were significantly correlated with VEGF-A in tumor tissues. Both HCC and LC expressed similar levels of gene and protein hypoxia inducible factor (HIF)-1α. Positive cross-regulation occurred with the alternative administration of siRNAs targeting THPO and those targeting VEGF-A in hypoxic liver cancer cell lines. These results suggest THPO and VEGF-A might act as interdependently regulated autocrine and/or paracrine systems for cellular growth in HCC. This might be clinically interesting, since new classes of THPOR agonistic/antagonistic drugs may provide novel therapeutic options to correct the frequent hemostatic abnormality seen in HCC patients.


Sign in / Sign up

Export Citation Format

Share Document