scholarly journals Gap junctions remain open during cytochrome c-induced cell death: relationship of conductance to ‘bystander’ cell killing

2006 ◽  
Vol 13 (10) ◽  
pp. 1707-1714 ◽  
Author(s):  
K Cusato ◽  
H Ripps ◽  
J Zakevicius ◽  
D C Spray
2003 ◽  
Vol 23 (16) ◽  
pp. 6413-6422 ◽  
Author(s):  
Karen Cusato ◽  
Alejandra Bosco ◽  
Renato Rozental ◽  
Cinthya A. Guimarães ◽  
Benjamin E. Reese ◽  
...  

2020 ◽  
Author(s):  
Yu-Chien Hung ◽  
Kuan-Lin Huang ◽  
Po-Lin Chen ◽  
Han-Yi Lin ◽  
Huei-An Lu ◽  
...  

2021 ◽  
Vol 22 (7) ◽  
pp. 3503
Author(s):  
Raf Van Campenhout ◽  
Ana Rita Gomes ◽  
Timo W.M. De Groof ◽  
Serge Muyldermans ◽  
Nick Devoogdt ◽  
...  

Gap junctions and connexin hemichannels mediate intercellular and extracellular communication, respectively. While gap junctions are seen as the “good guys” by controlling homeostasis, connexin hemichannels are considered as the “bad guys”, as their activation is associated with the onset and dissemination of disease. Open connexin hemichannels indeed mediate the transport of messengers between the cytosol and extracellular environment and, by doing so, fuel inflammation and cell death in a plethora of diseases. The present mini-review discusses the mechanisms involved in the activation of connexin hemichannels during pathology.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2004
Author(s):  
Prabhu Thirusangu ◽  
Christopher L. Pathoulas ◽  
Upasana Ray ◽  
Yinan Xiao ◽  
Julie Staub ◽  
...  

We previously reported that the antimalarial compound quinacrine (QC) induces autophagy in ovarian cancer cells. In the current study, we uncovered that QC significantly upregulates cathepsin L (CTSL) but not cathepsin B and D levels, implicating the specific role of CTSL in promoting QC-induced autophagic flux and apoptotic cell death in OC cells. Using a Magic Red® cathepsin L activity assay and LysoTracker red, we discerned that QC-induced CTSL activation promotes lysosomal membrane permeability (LMP) resulting in the release of active CTSL into the cytosol to promote apoptotic cell death. We found that QC-induced LMP and CTSL activation promotes Bid cleavage, mitochondrial outer membrane permeabilization (MOMP), and mitochondrial cytochrome-c release. Genetic (shRNA) and pharmacological (Z-FY(tBU)-DMK) inhibition of CTSL markedly reduces QC-induced autophagy, LMP, MOMP, apoptosis, and cell death; whereas induced overexpression of CTSL in ovarian cancer cell lines has an opposite effect. Using recombinant CTSL, we identified p62/SQSTM1 as a novel substrate of CTSL, suggesting that CTSL promotes QC-induced autophagic flux. CTSL activation is specific to QC-induced autophagy since no CTSL activation is seen in ATG5 knockout cells or with the anti-malarial autophagy-inhibiting drug chloroquine. Importantly, we showed that upregulation of CTSL in QC-treated HeyA8MDR xenografts corresponds with attenuation of p62, upregulation of LC3BII, cytochrome-c, tBid, cleaved PARP, and caspase3. Taken together, the data suggest that QC-induced autophagy and CTSL upregulation promote a positive feedback loop leading to excessive autophagic flux, LMP, and MOMP to promote QC-induced cell death in ovarian cancer cells.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2003
Author(s):  
Samet Kocabey ◽  
Aslihan Ekim Kocabey ◽  
Roger Schneiter ◽  
Curzio Rüegg

DNA nanotechnology offers to build nanoscale structures with defined chemistries to precisely position biomolecules or drugs for selective cell targeting and drug delivery. Owing to the negatively charged nature of DNA, for delivery purposes, DNA is frequently conjugated with hydrophobic moieties, positively charged polymers/peptides and cell surface receptor-recognizing molecules or antibodies. Here, we designed and assembled cholesterol-modified DNA nanotubes to interact with cancer cells and conjugated them with cytochrome c to induce cancer cell apoptosis. By flow cytometry and confocal microscopy, we observed that DNA nanotubes efficiently bound to the plasma membrane as a function of the number of conjugated cholesterol moieties. The complex was taken up by the cells and localized to the endosomal compartment. Cholesterol-modified DNA nanotubes, but not unmodified ones, increased membrane permeability, caspase activation and cell death. Irreversible inhibition of caspase activity with a caspase inhibitor, however, only partially prevented cell death. Cytochrome c-conjugated DNA nanotubes were also efficiently taken up but did not increase the rate of cell death. These results demonstrate that cholesterol-modified DNA nanotubes induce cancer cell death associated with increased cell membrane permeability and are only partially dependent on caspase activity, consistent with a combined form of apoptotic and necrotic cell death. DNA nanotubes may be further developed as primary cytotoxic agents, or drug delivery vehicles, through cholesterol-mediated cellular membrane interactions and uptake.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Adeola Oluwakemi Olowofolahan ◽  
Obinna Matthew Paulinus ◽  
Heritage Mojisola Dare ◽  
Olufunso Olabode Olorunsogo

Abstract Background Some antitumor or anticancer agents have been shown to execute cell death by induction of mitochondrial permeability transition (mPT) pore opening in order to elicit their chemotherapeutic effect. Therefore, this study investigated the effect of metformin on cell death via rat uterus mPT pore and estradiol benzoate-induced uterine defect and associated pathophysiological disorder in female rat. Mitochondria were isolated using differential centrifugation. The mPT pore opening, cytochrome c release and mitochondrial ATPase activity were determined spectrophotometrically. Caspases 9 and 3 activities, MDA and estradiol levels and SOD, GSH activities, were determined using ELISA technique. Histological and histochemical assessments of the uterine section were carried out using standard methods. Results Metformin at concentrations 10–90 μg/mL, showed no significant effect on mPT pore opening, mATPase activity and release of cytochrome c. However, oral administration of metformin caused mPT pore opening, enhancement of mATPase activity and activation of caspases 9 and 3 significantly at 300 and 400 mg/kg. Metformin protected against estradiol benzoate (EB)-induced uterine defect and other associated pathophysiological disorder. It also improved the antioxidant defense system. The histological evaluation revealed the protective effect of metformin on the cellular architecture of the uterus while the histochemical examination showed severe hyperplasia in the uterine section of EB-treated rats, remarkably reversed by metformin co-treatment. Conclusion This study suggests that metformin at high doses induces apoptosis via rat uterus mPT pore opening and protects against EB-induced uterine defect (hyperplasia) and associated pathophysiological disorder.


Sign in / Sign up

Export Citation Format

Share Document