scholarly journals Dopamine Receptor Modulation of Hypoxic—Ischemic Neuronal Injury in Striatum of Newborn Piglets

2007 ◽  
Vol 27 (7) ◽  
pp. 1339-1351 ◽  
Author(s):  
Zeng-Jin Yang ◽  
Michel Torbey ◽  
Xiaoling Li ◽  
Jennifer Bernardy ◽  
W Christopher Golden ◽  
...  

Dopamine receptors regulate glutamatergic neurotransmission and Na+,K+-ATPase via protein kinase A (PKA) and dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32)-dependent signaling. Consequently, dopamine receptor activation may modulate neonatal hypoxic–ischemic (H–I) neuronal damage in the selectively vulnerable putamen enriched with dopaminergic receptors. Piglets subjected to two durations of hypoxia followed by asphyxic cardiac arrest were treated with a D1-like (SCH23390) or D2-like (sulpiride) receptor antagonist. At 4 days of recovery from less severe H–I, the remaining viable neurons in putamen were 60% of control, but nearly completely salvaged by pretreatment with SCH23390 or sulpiride. After more severe H–I in which only 18% of neurons were viable, partial neuroprotection was seen with SCH23390 pretreatment (50%) and posttreatment (39%) and with sulpiride pretreatment (35%), but not with sulpiride posttreatment (24%). Dopamine was significantly elevated in microdialysis samples from putamen during asphyxia and the first 15 mins of reoxygenation. Pretreatment with SCH23390 or sulpiride largely attenuated the increased nitrotyrosine and the decreased Na+,K+-ATPase activity that occurred at 3 h after severe H–I. Pretreatment with SCH23390, but not sulpiride, also attenuated H–I-induced increases in PKA-dependent phosphorylation of Thr34 on DARPP-32, Ser943 on the α subunit of Na+,K+-ATPase, and Ser897 of the N-methyl-d-aspartate (NMDA) receptor NR1 subunit. These findings indicate that D1 and D2 dopamine receptor activation contribute to neuronal death in newborn putamen after H–I in association with increased protein nitration and decreased Na+,K+-ATPase activity. Furthermore, mechanisms of D1 receptor toxicity may involve DARPP-32-dependent phosphorylation of NMDA receptor NR1 and Na+,K+-ATPase.

2020 ◽  
Vol 17 (4) ◽  
pp. 510-517
Author(s):  
Santiago Ortega-Gutierrez ◽  
Brandy Jones ◽  
Alan Mendez-Ruiz ◽  
Pankhil Shah ◽  
Michel T. Torbey

Background: Hypoxic-ischemic encephalopathy (HIE) is a major cause of pediatric and adult mortality and morbidity. Unfortunately, to date, no effective treatment has been identified. In the striatum, neuronal injury is analogous to the cellular mechanism of necrosis observed during NMethyl- D-Aspartate (NMDA) excitotoxicity. Adenosine acts as a neuromodulator in the central nervous system, the role of which relies mostly on controlling excitatory glutamatergic synapses. Objective: To examine the effect of pretreatment of SCH58261, an adenosine 2A (A2A) receptor antagonist and modulator of NMDA receptor function, following hypoxic-ischemia (HI) on sodium- potassium ATPase (Na+, K+-ATPase) activity and oxidative stress. Methods: Piglets (4-7 days old) were subjected to 30 min hypoxia and 7 min of airway occlusion producing asphyxic cardiac arrest. Groups were divided into four categories: HI samples were divided into HI-vehicle group (n = 5) and HI-A2A group (n = 5). Sham controls were divided into Sham vehicle (n = 5) and Sham A2A (n = 5) groups. Vehicle groups were pretreated with 0.9% saline, whereas A2A animals were pretreated with SCH58261 10 min prior to intervention. Striatum samples were collected 3 h post-arrest. Sodium-potassium ATPase (Na+, K+-ATPase) activity, malondialdehyde (MDA) + 4-hydroxyalkenals (4-HDA) and glutathione (GSH) levels were compared. Results: Pretreatment with SCH58261 significantly attenuated the decrease in Na+, K+-ATPase, decreased MDA+4-HDA levels and increased GSH in the HI-A2A group when compared to HIvehicle. Conclusion: A2A receptor activation may contribute to neuronal injury in newborn striatum after HI in association with decreased Na+, K+-ATPase activity and increased oxidative stress.


2021 ◽  
Vol 400 ◽  
pp. 113047
Author(s):  
László Péczely ◽  
Gabriella Kékesi ◽  
Veronika Kállai ◽  
Tamás Ollmann ◽  
Kristóf László ◽  
...  

2004 ◽  
Vol 286 (3) ◽  
pp. F451-F457 ◽  
Author(s):  
Aditi Marwaha ◽  
Anees Ahmad Banday ◽  
Mustafa F. Lokhandwala

Dopamine, via activation of renal D1 receptors, inhibits the activities of Na-K-ATPase and Na/H exchanger and subsequently increases sodium excretion. Decreased renal dopamine production and sodium excretion are associated with type I diabetes. However, it is not known whether the response to D1 receptor activation is altered in type I diabetes. The present study was designed to examine the effect of streptozotocin-induced type I diabetes on renal D1 receptor expression and function. Streptozotocin treatment of Sprague-Dawley rats caused a fourfold increase in plasma levels of glucose along with a significant decrease in insulin levels compared with control rats. Intravenous administration of SKF-38393, a D1 receptor agonist, caused a threefold increase in sodium excretion in control rats. However, SKF-38393 failed to produce natriuresis in diabetic rats. SKF-38393 caused a concentration-dependent inhibition of Na-K-ATPase activity in renal proximal tubules of control rats. However, the ability of SKF-38393 to inhibit Na-K-ATPase activity was markedly diminished in diabetic rats. D1 receptor numbers and protein abundance as determined by [3H]SCH-23390 ligand binding and Western blot analysis were markedly reduced in diabetic rats compared with control rats. Moreover, SKF-38393 failed to stimulate GTPγS binding in proximal tubular membranes from diabetic rats compared with control rats. We conclude that the natriuretic response to D1 receptor activation is reduced in type I diabetes as a result of a decrease in D1 receptor expression and defective receptor G protein coupling. These abnormalities may contribute to the sodium retention associated with type I diabetes.


2020 ◽  
Author(s):  
Enrica Montalban ◽  
Albert Giralt ◽  
Lieng Taing ◽  
Yuki Nakamura ◽  
Claire Martin ◽  
...  

ABSTRACTForebrain dopaminoceptive neurons play a key role in movement, action selection, motivation, and working memory. Their activity is dysregulated in addiction, Parkinson’s disease and other conditions. To characterize the diverse dopamine target neuronal populations, we compare translating mRNAs in neurons of dorsal striatum and nucleus accumbens expressing D1 or D2 dopamine receptor and prefrontal cortex expressing D1 receptor. We identify D1/D2 and striatal dorso-ventral differences in the translational and splicing landscapes, which establish the characteristics of dopaminoceptive neurons. Expression differences and network analyses identify novel transcription factors with presumptive roles in these differences. Prostaglandin E2 appears as a candidate upstream regulator in the dorsal striatum, a hypothesis supported by converging functional evidence indicating its role in enhancing D2 dopamine receptor action. Our study provides powerful resources for characterizing dopamine target neurons, new information about striatal gene expression patterns, and reveals the unforeseen role of prostaglandin E2 in the dorsal striatum.


Sign in / Sign up

Export Citation Format

Share Document