scholarly journals β-Subunits of voltage-gated sodium channels in human prostate cancer: quantitative in vitro and in vivo analyses of mRNA expression

2007 ◽  
Vol 11 (4) ◽  
pp. 325-333 ◽  
Author(s):  
J K J Diss ◽  
S P Fraser ◽  
M M Walker ◽  
A Patel ◽  
D S Latchman ◽  
...  
2018 ◽  
Vol 128 (6) ◽  
pp. 1151-1166 ◽  
Author(s):  
Marit Poffers ◽  
Nathalie Bühne ◽  
Christine Herzog ◽  
Anja Thorenz ◽  
Rongjun Chen ◽  
...  

Abstract Background Voltage-gated sodium channels generate action potentials in excitable cells, but they have also been attributed noncanonical roles in nonexcitable cells. We hypothesize that voltage-gated sodium channels play a functional role during extravasation of neutrophils. Methods Expression of voltage-gated sodium channels was analyzed by polymerase chain reaction. Distribution of Nav1.3 was determined by immunofluorescence and flow cytometry in mouse models of ischemic heart and kidney injury. Adhesion, transmigration, and chemotaxis of neutrophils to endothelial cells and collagen were investigated with voltage-gated sodium channel inhibitors and lidocaine in vitro. Sodium currents were examined with a whole cell patch clamp. Results Mouse and human neutrophils express multiple voltage-gated sodium channels. Only Nav1.3 was detected in neutrophils recruited to ischemic mouse heart (25 ± 7%, n = 14) and kidney (19 ± 2%, n = 6) in vivo. Endothelial adhesion of mouse neutrophils was reduced by tetrodotoxin (56 ± 9%, unselective Nav-inhibitor), ICA121431 (53 ± 10%), and Pterinotoxin-2 (55 ± 9%; preferential inhibitors of Nav1.3, n = 10). Tetrodotoxin (56 ± 19%), ICA121431 (62 ± 22%), and Pterinotoxin-2 (59 ± 22%) reduced transmigration of human neutrophils through endothelial cells, and also prevented chemotactic migration (n = 60, 3 × 20 cells). Lidocaine reduced neutrophil adhesion to 60 ± 9% (n = 10) and transmigration to 54 ± 8% (n = 9). The effect of lidocaine was not increased by ICA121431 or Pterinotoxin-2. Conclusions Nav1.3 is expressed in neutrophils in vivo; regulates attachment, transmigration, and chemotaxis in vitro; and may serve as a relevant target for antiinflammatory effects of lidocaine.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1420
Author(s):  
Dennis Paul ◽  
Paul Maggi ◽  
Fabio Del Piero ◽  
Steven D. Scahill ◽  
Kelly Jean Sherman ◽  
...  

Concurrent activation of voltage-gated sodium channels (VGSCs) and blockade of Na+ pumps causes a targeted osmotic lysis (TOL) of carcinomas that over-express the VGSCs. Unfortunately, electrical current bypasses tumors or tumor sections because of the variable resistance of the extracellular microenvironment. This study assesses pulsed magnetic fields (PMFs) as a potential source for activating VGSCs to initiate TOL in vitro and in vivo as PMFs are unaffected by nonconductive tissues. In vitro, PMFs (0–80 mT, 10 msec pulses, 15 pps for 10 min) combined with digoxin-lysed (500 nM) MDA-MB-231 breast cancer cells stimulus-dependently. Untreated, stimulation-only, and digoxin-only control cells did not lyse. MCF-10a normal breast cells were also unaffected. MDA-MB-231 cells did not lyse in a Na+-free buffer. In vivo, 30 min of PMF stimulation of MDA-MB-231 xenografts in J/Nu mice or 4T1 homografts in BALB/c mice, concurrently treated with 7 mg/kg digoxin reduced tumor size by 60–100%. Kidney, spleen, skin and muscle from these animals were unaffected. Stimulation-only and digoxin-only controls were similar to untreated tumors. BALB/C mice with 4T1 homografts survived significantly longer than mice in the three control groups. The data presented is evidence that the PMFs to activate VGSCs in TOL provide sufficient energy to lyse highly malignant cells in vitro and to reduce tumor growth of highly malignant grafts and improve host survival in vivo, thus supporting targeted osmotic lysis of cancer as a possible method for treating late-stage carcinomas without compromising noncancerous tissues.


1996 ◽  
Vol 315 (3) ◽  
pp. 901-908 ◽  
Author(s):  
Hendrikus J. DUBBINK ◽  
Nicole S. VERKAIK ◽  
Peter W. FABER ◽  
Jan TRAPMAN ◽  
Fritz H. SCHRÖDER ◽  
...  

Transglutaminases (TGases) are calcium-dependent enzymes catalysing the post-translational cross-linking of proteins. In the prostate at least two TGases are present, the ubiquitously expressed tissue-type TGase (TGC), and a prostate-restricted TGase (TGP). This paper deals with the molecular cloning and characterization of the cDNA encoding the human prostate TGase (hTGP). For this purpose we have screened a human prostate cDNA library with a probe from the active-site region of TGC. The largest isolated cDNA contained an open reading frame encoding a protein of 684 amino acids with a predicted molecular mass of 77 kDa as confirmed by in vitro transcription–translation and subsequent SDS/PAGE. The hTGP gene was tissue-specifically expressed in the prostate, yielding an mRNA of approx. 3.5 kb. Furthermore, a 3-fold androgen-induced up-regulation of hTGP mRNA expression has been demonstrated in the recently developed human prostate cancer cell line, PC346C. Other well established human prostate cancer cell lines, LNCaP and PC-3, showed no detectable hTGP mRNA expression on a Northern blot. The gene coding for prostate TGase was assigned to chromosome 3.


PLoS ONE ◽  
2010 ◽  
Vol 5 (4) ◽  
pp. e10147 ◽  
Author(s):  
Qingchuan Dong ◽  
Ping Meng ◽  
Tao Wang ◽  
Weiwei Qin ◽  
Weijun Qin ◽  
...  

2011 ◽  
Vol 29 (7_suppl) ◽  
pp. 122-122
Author(s):  
H. J. Ananias ◽  
Z. Yu ◽  
P. H. Elsinga ◽  
I. J. de Jong

122 Background: The peptide bombesin (BN) and derivates thereof show high binding affinity for the gastrin-releasing peptide receptor (GRPR), which is highly expressed in primary and metastasized prostate cancer. We have synthesized a new BN-based radiopharmaceutical 99mTechnetium-HYNIC(tricine/TPPTS)-Aca-BN(7–14) (99mTc-HABN) and evaluated its GRPR targeting properties in vitro and in a xenograft tumor model for human prostate cancer in athymic mice. Methods: 99mTc- HABN was synthesized and its lipophilicity and stability were investigated. The IC50, internalization and efflux properties were determined in vitro using the GRPR expressing human prostate cancer cell line PC-3. 99mTc-HABN biodistribution and microSPECT imaging were performed in PC-3 tumor-bearing athymic mice. Results: 99mTc-HABN was prepared with high labeling yield (>90%), high radiochemical purity (>95%) and a specific activity of ∼19.8 MBq/nmol. The partition coefficient log P value was −1.60±0.06. 99mTc-HABN proved to be stable in human serum for 6 hours. The IC50 of HABN was 12.81±0.14 nM. Incubation of PC-3 cells with 99mTc-HABN demonstrated rapid cellular internalization and a long intracellular retention time. When mice were injected with 99mTc-HABN the activity was predominantly cleared via the kidneys. Uptake in the tumor was 2.24±0.64 %ID/g after 30 minutes, with a steady decrease during the 4 hours study period. In vivo experiments with a blocking agent showed GRPR mediated uptake. 99mTc-HABN microSPECT imaging resulted in clear delineation of the tumor. Conclusions: 99mTc-HABN is a novel BN-based radiopharmaceutical that appears to be suitable for targeted imaging of prostate cancer. No significant financial relationships to disclose.


The Prostate ◽  
2008 ◽  
Vol 68 (8) ◽  
pp. 849-860 ◽  
Author(s):  
Li Jia ◽  
Weiping Yu ◽  
Pei Wang ◽  
Bob G. Sanders ◽  
Kimberly Kline

Sign in / Sign up

Export Citation Format

Share Document