scholarly journals High-resolution far-field ghost imaging via sparsity constraint

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Wenlin Gong ◽  
Shensheng Han
Author(s):  
N. Bonnet ◽  
M. Troyon ◽  
P. Gallion

Two main problems in high resolution electron microscopy are first, the existence of gaps in the transfer function, and then the difficulty to find complex amplitude of the diffracted wawe from registered intensity. The solution of this second problem is in most cases only intended by the realization of several micrographs in different conditions (defocusing distance, illuminating angle, complementary objective apertures…) which can lead to severe problems of contamination or radiation damage for certain specimens.Fraunhofer holography can in principle solve both problems stated above (1,2). The microscope objective is strongly defocused (far-field region) so that the two diffracted beams do not interfere. The ideal transfer function after reconstruction is then unity and the twin image do not overlap on the reconstructed one.We show some applications of the method and results of preliminary tests.Possible application to the study of cavitiesSmall voids (or gas-filled bubbles) created by irradiation in crystalline materials can be observed near the Scherzer focus, but it is then difficult to extract other informations than the approximated size.


2017 ◽  
Vol 25 (17) ◽  
pp. 20952
Author(s):  
Xiaopeng Peng ◽  
Garreth J. Ruane ◽  
Marco B. Quadrelli ◽  
Grover A. Swartzlander

2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Fei Wang ◽  
Chenglong Wang ◽  
Mingliang Chen ◽  
Wenlin Gong ◽  
Yu Zhang ◽  
...  

AbstractGhost imaging (GI) facilitates image acquisition under low-light conditions by single-pixel measurements and thus has great potential in applications in various fields ranging from biomedical imaging to remote sensing. However, GI usually requires a large amount of single-pixel samplings in order to reconstruct a high-resolution image, imposing a practical limit for its applications. Here we propose a far-field super-resolution GI technique that incorporates the physical model for GI image formation into a deep neural network. The resulting hybrid neural network does not need to pre-train on any dataset, and allows the reconstruction of a far-field image with the resolution beyond the diffraction limit. Furthermore, the physical model imposes a constraint to the network output, making it effectively interpretable. We experimentally demonstrate the proposed GI technique by imaging a flying drone, and show that it outperforms some other widespread GI techniques in terms of both spatial resolution and sampling ratio. We believe that this study provides a new framework for GI, and paves a way for its practical applications.


2021 ◽  
Author(s):  
Abdul Muqtadir Khan ◽  
Denis Emelyanov ◽  
Rostislav Romanovskii ◽  
Olga Nevvonen

Abstract Different applications of fracture bridging and diversion are used regularly in carbonate acid fracturing without an in-depth understanding of the physical phenomena that dominate the processes involved in the bridging and diversion process. The extension of modeling capabilities in conjunction with yard-scale and field-scale experiences will increase our understanding of these processes. A robust multimodal diversion pill and polylactic acid fiber-laden viscous acid were utilized for near-wellbore and far-field bridging, respectively. Numerous field treatments demonstrated the uncertainty of achieving effective diversion. An existing multiphysics model was extended to develop functionalities to model diversions at different scale. Extensive laboratory testing was conducted to understand the scale of bridging and diversion mechanisms. Finally, a bridging yard test was designed, and field case studies were used to integrate all the branches. Field cases showed a diversion pressure up to 4,000 psi depending on perforation strategy, pill volume, and pill seating rate. Correlations showed the interdependence of multiple parameters in diversion processes. The field studies motivated modeling capabilities to simulate the critical diversion processes at high resolution and quality. The model simulates diverting agents that reduce leakoff in the fracture area and their effects on fracture geometry. The approach considers the acid reaction kinetics coupled with geomechanics and fluid transport. Different diverting agent concentrations required for bridging can be modeled effectively. A yard test was designed to confirm the integrity of the pill material through completion valves (minimum inside diameter 9.5 mm) and analyzed with high-resolution imaging. All the theoretical, mathematical, and numerical findings from modeling were integrated with laboratory- and yard-scale experimentation results to develop and validate near-wellbore and far-field diversion modeling. Analytical correlations were formulated from injection rate, particulate material concentration, pill volumes, fracture width, etc., to incorporate and validate the model. This study enhances understanding of the different diversion mechanisms from high-fidelity theoretical modeling approach integrated with a practical experimental view at laboratory and field scale. Current comprehensive research has significant potential to make the modeling approach a reliable method to develop tight carbonate formations around the globe.


2019 ◽  
Vol 46 (8) ◽  
pp. 0810002 ◽  
Author(s):  
王成龙 Chenglong Wang ◽  
龚文林 Wenlin Gong ◽  
邵学辉 Xuehui Shao ◽  
韩申生 Shensheng Han

2021 ◽  
Vol 19 (2) ◽  
pp. 021102
Author(s):  
Pengwei Wang ◽  
Chenglong Wang ◽  
Cuiping Yu ◽  
Shuai Yue ◽  
Wenlin Gong ◽  
...  

2020 ◽  
Vol 22 (5) ◽  
pp. 2704-2712 ◽  
Author(s):  
Taran Driver ◽  
Siqi Li ◽  
Elio G. Champenois ◽  
Joseph Duris ◽  
Daniel Ratner ◽  
...  

Recently demonstrated isolated attosecond XFEL pulses should allow the probing of ultrafast electron dynamics at X-ray wavelengths. The authors use ghost imaging to enable high-resolution transient absorption spectroscopy at fluctuating XFEL sources.


2015 ◽  
pp. 1-31
Author(s):  
Elen Tolstik ◽  
Sapna Shukla ◽  
Rainer Heintzmann
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document