scholarly journals Resin-acid derivatives as potent electrostatic openers of voltage-gated K channels and suppressors of neuronal excitability

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Nina E Ottosson ◽  
Xiongyu Wu ◽  
Andreas Nolting ◽  
Urban Karlsson ◽  
Per-Eric Lund ◽  
...  
2015 ◽  
Vol 112 (9) ◽  
pp. E1010-E1019 ◽  
Author(s):  
Xiaofan Li ◽  
Hansi Liu ◽  
Jose Chu Luo ◽  
Sarah A. Rhodes ◽  
Liana M. Trigg ◽  
...  

We examined the origins and functional evolution of the Shaker and KCNQ families of voltage-gated K+ channels to better understand how neuronal excitability evolved. In bilaterians, the Shaker family consists of four functionally distinct gene families (Shaker, Shab, Shal, and Shaw) that share a subunit structure consisting of a voltage-gated K+ channel motif coupled to a cytoplasmic domain that mediates subfamily-exclusive assembly (T1). We traced the origin of this unique Shaker subunit structure to a common ancestor of ctenophores and parahoxozoans (cnidarians, bilaterians, and placozoans). Thus, the Shaker family is metazoan specific but is likely to have evolved in a basal metazoan. Phylogenetic analysis suggested that the Shaker subfamily could predate the divergence of ctenophores and parahoxozoans, but that the Shab, Shal, and Shaw subfamilies are parahoxozoan specific. In support of this, putative ctenophore Shaker subfamily channel subunits coassembled with cnidarian and mouse Shaker subunits, but not with cnidarian Shab, Shal, or Shaw subunits. The KCNQ family, which has a distinct subunit structure, also appears solely within the parahoxozoan lineage. Functional analysis indicated that the characteristic properties of Shaker, Shab, Shal, Shaw, and KCNQ currents evolved before the divergence of cnidarians and bilaterians. These results show that a major diversification of voltage-gated K+ channels occurred in ancestral parahoxozoans and imply that many fundamental mechanisms for the regulation of action potential propagation evolved at this time. Our results further suggest that there are likely to be substantial differences in the regulation of neuronal excitability between ctenophores and parahoxozoans.


2012 ◽  
Vol 32 (17) ◽  
pp. 5716-5727 ◽  
Author(s):  
C. Marionneau ◽  
Y. Carrasquillo ◽  
A. J. Norris ◽  
R. R. Townsend ◽  
L. L. Isom ◽  
...  

2008 ◽  
Vol 295 (1) ◽  
pp. C73-C80 ◽  
Author(s):  
Friderike Schuetz ◽  
Sharad Kumar ◽  
Philip Poronnik ◽  
David J. Adams

The voltage-gated KCNQ2/3 and KCNQ3/5 K+ channels regulate neuronal excitability. We recently showed that KCNQ2/3 and KCNQ3/5 channels are regulated by the ubiquitin ligase Nedd4-2. Serum- and glucocorticoid-regulated kinase-1 (SGK-1) plays an important role in regulation of epithelial ion transport. SGK-1 phosphorylation of Nedd4-2 decreases the ability of Nedd4-2 to ubiquitinate the epithelial Na+ channel, which increases the abundance of channel protein in the cell membrane. In this study, we investigated the mechanism(s) of SGK-1 regulation of M-type KCNQ channels expressed in Xenopus oocytes. SGK-1 significantly upregulated the K+ current amplitudes of KCNQ2/3 and KCNQ3/5 channels ∼1.4- and ∼1.7-fold, respectively, whereas the kinase-inactive SGK-1 mutant had no effect. The cell surface levels of KCNQ2-hemagglutinin/3 were also increased by SGK-1. Deletion of the KCNQ3 channel COOH terminus in the presence of SGK-1 did not affect the K+ current amplitude of KCNQ2/3/5-mediated currents. Coexpression of Nedd4-2 and SGK-1 with KCNQ2/3 or KCNQ3/5 channels did not significantly alter K+ current amplitudes. Only the Nedd4-2 mutant S448ANedd4-2 exhibited a significant downregulation of the KCNQ2/3/5 K+ current amplitudes. Taken together, these results demonstrate a potential mechanism for regulation of KCNQ2/3 and KCNQ3/5 channels by SGK-1 regulation of the activity of the ubiquitin ligase Nedd4-2.


FEBS Letters ◽  
2009 ◽  
Vol 583 (13) ◽  
pp. 2225-2230 ◽  
Author(s):  
Masashi Yoshida ◽  
Katsuya Dezaki ◽  
Shiho Yamato ◽  
Atsushi Aoki ◽  
Hitoshi Sugawara ◽  
...  

2005 ◽  
Vol 26 (5) ◽  
pp. 743-752 ◽  
Author(s):  
Hiroaki Misonou ◽  
Durga P. Mohapatra ◽  
James S. Trimmer

2011 ◽  
Vol 25 (S1) ◽  
Author(s):  
SO YEONG LEE ◽  
SOO HWA JANG ◽  
SUN YOUNG CHOI ◽  
PAN DONG RYU

Sign in / Sign up

Export Citation Format

Share Document