scholarly journals Major diversification of voltage-gated K+ channels occurred in ancestral parahoxozoans

2015 ◽  
Vol 112 (9) ◽  
pp. E1010-E1019 ◽  
Author(s):  
Xiaofan Li ◽  
Hansi Liu ◽  
Jose Chu Luo ◽  
Sarah A. Rhodes ◽  
Liana M. Trigg ◽  
...  

We examined the origins and functional evolution of the Shaker and KCNQ families of voltage-gated K+ channels to better understand how neuronal excitability evolved. In bilaterians, the Shaker family consists of four functionally distinct gene families (Shaker, Shab, Shal, and Shaw) that share a subunit structure consisting of a voltage-gated K+ channel motif coupled to a cytoplasmic domain that mediates subfamily-exclusive assembly (T1). We traced the origin of this unique Shaker subunit structure to a common ancestor of ctenophores and parahoxozoans (cnidarians, bilaterians, and placozoans). Thus, the Shaker family is metazoan specific but is likely to have evolved in a basal metazoan. Phylogenetic analysis suggested that the Shaker subfamily could predate the divergence of ctenophores and parahoxozoans, but that the Shab, Shal, and Shaw subfamilies are parahoxozoan specific. In support of this, putative ctenophore Shaker subfamily channel subunits coassembled with cnidarian and mouse Shaker subunits, but not with cnidarian Shab, Shal, or Shaw subunits. The KCNQ family, which has a distinct subunit structure, also appears solely within the parahoxozoan lineage. Functional analysis indicated that the characteristic properties of Shaker, Shab, Shal, Shaw, and KCNQ currents evolved before the divergence of cnidarians and bilaterians. These results show that a major diversification of voltage-gated K+ channels occurred in ancestral parahoxozoans and imply that many fundamental mechanisms for the regulation of action potential propagation evolved at this time. Our results further suggest that there are likely to be substantial differences in the regulation of neuronal excitability between ctenophores and parahoxozoans.

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Nina E Ottosson ◽  
Xiongyu Wu ◽  
Andreas Nolting ◽  
Urban Karlsson ◽  
Per-Eric Lund ◽  
...  

2012 ◽  
Vol 32 (17) ◽  
pp. 5716-5727 ◽  
Author(s):  
C. Marionneau ◽  
Y. Carrasquillo ◽  
A. J. Norris ◽  
R. R. Townsend ◽  
L. L. Isom ◽  
...  

2008 ◽  
Vol 295 (1) ◽  
pp. C73-C80 ◽  
Author(s):  
Friderike Schuetz ◽  
Sharad Kumar ◽  
Philip Poronnik ◽  
David J. Adams

The voltage-gated KCNQ2/3 and KCNQ3/5 K+ channels regulate neuronal excitability. We recently showed that KCNQ2/3 and KCNQ3/5 channels are regulated by the ubiquitin ligase Nedd4-2. Serum- and glucocorticoid-regulated kinase-1 (SGK-1) plays an important role in regulation of epithelial ion transport. SGK-1 phosphorylation of Nedd4-2 decreases the ability of Nedd4-2 to ubiquitinate the epithelial Na+ channel, which increases the abundance of channel protein in the cell membrane. In this study, we investigated the mechanism(s) of SGK-1 regulation of M-type KCNQ channels expressed in Xenopus oocytes. SGK-1 significantly upregulated the K+ current amplitudes of KCNQ2/3 and KCNQ3/5 channels ∼1.4- and ∼1.7-fold, respectively, whereas the kinase-inactive SGK-1 mutant had no effect. The cell surface levels of KCNQ2-hemagglutinin/3 were also increased by SGK-1. Deletion of the KCNQ3 channel COOH terminus in the presence of SGK-1 did not affect the K+ current amplitude of KCNQ2/3/5-mediated currents. Coexpression of Nedd4-2 and SGK-1 with KCNQ2/3 or KCNQ3/5 channels did not significantly alter K+ current amplitudes. Only the Nedd4-2 mutant S448ANedd4-2 exhibited a significant downregulation of the KCNQ2/3/5 K+ current amplitudes. Taken together, these results demonstrate a potential mechanism for regulation of KCNQ2/3 and KCNQ3/5 channels by SGK-1 regulation of the activity of the ubiquitin ligase Nedd4-2.


Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 244
Author(s):  
Seung Hee Eom ◽  
Tae Kyung Hyun

Histone deacetylases (HDACs) are known as erasers that remove acetyl groups from lysine residues in histones. Although plant HDACs play essential roles in physiological processes, including various stress responses, our knowledge concerning HDAC gene families and their evolutionary relationship remains limited. In Brassica rapa genome, we identified 20 HDAC genes, which are divided into three major groups: RPD3/HDA1, HD2, and SIR2 families. In addition, seven pairs of segmental duplicated paralogs and one pair of tandem duplicated paralogs were identified in the B. rapa HDAC (BraHDAC) family, indicating that segmental duplication is predominant for the expansion of the BraHDAC genes. The expression patterns of paralogous gene pairs suggest a divergence in the function of BraHDACs under various stress conditions. Furthermore, we suggested that BraHDA3 (homologous of Arabidopsis HDA14) encodes the functional HDAC enzyme, which can be inhibited by Class I/II HDAC inhibitor SAHA. As a first step toward understanding the epigenetic responses to environmental stresses in Chinese cabbage, our results provide a solid foundation for functional analysis of the BraHDAC family.


FEBS Letters ◽  
2009 ◽  
Vol 583 (13) ◽  
pp. 2225-2230 ◽  
Author(s):  
Masashi Yoshida ◽  
Katsuya Dezaki ◽  
Shiho Yamato ◽  
Atsushi Aoki ◽  
Hitoshi Sugawara ◽  
...  

2004 ◽  
Vol 383 (2) ◽  
pp. 319-325 ◽  
Author(s):  
Xiaomei WANG ◽  
Norman G. NAGL ◽  
Deborah WILSKER ◽  
Michael VAN SCOY ◽  
Stephen PACCHIONE ◽  
...  

p270 (ARID1A) is a member of the ARID family of DNA-binding proteins and a subunit of human SWI/SNF-related complexes, which use the energy generated by an integral ATPase subunit to remodel chromatin. ARID1B is an independent gene product with an open reading frame that is more than 60% identical with p270. We have generated monoclonal antibodies specific for either p270 or ARID1B to facilitate the investigation of ARID1B and its potential interaction with human SWI/SNF complexes in vivo. Immunocomplex analysis provides direct evidence that endogenous ARID1B is associated with SWI/SNF-related complexes and indicates that p270 and ARID1B, similar to the ATPase subunits BRG1 and hBRM, are alternative, mutually exclusive subunits of the complexes. The ARID-containing subunits are not specific to the ATPases. Each associates with both BRG1 and hBRM, thus increasing the number of distinct subunit combinations known to be present in cells. Analysis of the panels of cell lines indicates that ARID1B, similar to p270, has a broad tissue distribution. The ratio of p270/ARID1B in typical cells is approx. 3.5:1, and BRG1 is distributed proportionally between the two ARID subunits. Analysis of DNA-binding behaviour indicates that ARID1B binds DNA in a non-sequence-specific manner similar to p270.


Sign in / Sign up

Export Citation Format

Share Document