scholarly journals Ultra-low Thermal Conductivity in Si/Ge Hierarchical Superlattice Nanowire

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Xin Mu ◽  
Lili Wang ◽  
Xueming Yang ◽  
Pu Zhang ◽  
Albert C. To ◽  
...  

Abstract Due to interfacial phonon scattering and nanoscale size effect, silicon/germanium (Si/Ge) superlattice nanowire (SNW) can have very low thermal conductivity, which is very attractive for thermoelectrics. In this paper, we demonstrate using molecular dynamics simulations that the already low thermal conductivity of Si/Ge SNW can be further reduced by introducing hierarchical structure to form Si/Ge hierarchical superlattice nanowire (H-SNW). The structural hierarchy introduces defects to disrupt the periodicity of regular SNW and scatters coherent phonons, which are the key contributors to thermal transport in regular SNW. Our simulation results show that periodically arranged defects in Si/Ge H-SNW lead to a ~38% reduction of the already low thermal conductivity of regular Si/Ge SNW. By randomizing the arrangement of defects and imposing additional surface complexities to enhance phonon scattering, further reduction in thermal conductivity can be achieved. Compared to pure Si nanowire, the thermal conductivity reduction of Si/Ge H-SNW can be as large as ~95%. It is concluded that the hierarchical structuring is an effective way of reducing thermal conductivity significantly in SNW, which can be a promising path for improving the efficiency of Si/Ge-based SNW thermoelectrics.


Author(s):  
Zhiting Tian ◽  
Sang Kim ◽  
Ying Sun ◽  
Bruce White

The phonon wave packet technique is used in conjunction with the molecular dynamics simulations to directly observe phonon scattering at material interfaces. The phonon transmission coefficient of nanocomposites is examined as a function of the defect size, thin film thickness, orientation of interface to the heat flow direction. To generalize the results based on phonons in a narrow frequency range and at normal incidence, the effective thermal conductivity of the same nanocomposite structure is calculated using non-equilibrium molecular dynamics simulations for model nanocomposites formed by two mass-mismatched Ar-like solids and heterogeneous Si-SiCO2 systems. The results are compared with the modified effective medium formulation for nanocomposites.



2011 ◽  
Vol 55-57 ◽  
pp. 1152-1155 ◽  
Author(s):  
Xing Li Zhang ◽  
Zhao Wei Sun

Molecular, dynamics simulation and the Boltzmann transport equation are used respectively to analyze the phonon transport in Si thin film. The MD result is in good agreement with the theoretical analysis values. The results show that the calculated thermal conductivity decreases almost linearly as the film thickness reduced and is almost independent of the temperature at the nanoscale. It was observed from the simulation results that there exists the obvious size effect on the thermal conductivity.



2015 ◽  
Vol 1105 ◽  
pp. 285-289 ◽  
Author(s):  
Jessa Mae P. Tagalog ◽  
Cachey Girly Alipala ◽  
Giovanni J. Paylaga ◽  
Naomi T. Paylaga ◽  
Rolando V. Bantaculo

This study examines the nature of thermal transport properties of single layer two-dimensional honeycomb structures of silicon-germanene nanoribbon (SiGeNR), silicene nanoribbon (SiNR) and germanene nanoribbon (GeNR) which have not yet been characterized experimentally. SiGeNR, SiNR and GeNR are the allotropes of silicon-germanium, silicon and germanium, respectively, withsp2hybridization. The thermal conductivity of the materials has been investigated using Tersoff potential through LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) by performing the molecular-dynamics simulations. The temperature is varied (50 K, 77 K, 150 K, 300 K, 500 K, 700 K, 1000 K, and 1200 K) with fixed nanoribbon dimension of 50 nm × 10 nm. The length is also varied (10 nm, 20 nm, 30 nm, 40 nm, and 50 nm) while the temperature is fixed at room temperature and the width is also fixed at 10 nm. The obtained results showed that the thermal conductivity of SiGeNR at room temperature is approximately 10 times higher than GeNR and approximately 6 times higher compared to SiNR. The thermal conductivity increases as the temperature is increased from 50 K – 300 K, and as the temperature is further increased, the thermal conductivity decreases with temperature. Moreover, the thermal conductivity in SiGeNR, SiNR, and GeNR increases as the length is being increased. Predicting new features of SiGeNR, SiNR and GeNR open new possibilities for nanoelectronic device applications of group IV two-dimensional materials.



2013 ◽  
Vol 561 ◽  
pp. 164-168
Author(s):  
Lian Xiang Ma ◽  
Gang Yang ◽  
Yuan Zheng Tang ◽  
Yan He

In this article, thermal conductivity of EPDM networks has been discussed using molecular dynamics simulations. The simulations are performed on four systems using adaptive intermolecular reactive empirical bond order (AIREBO) potential. The effect of Lennard-Jones (L-J) potential and torsion potential on thermal conductivity is discussed. The contribution of L-J potential to thermal conductivity is negative. However, contribution of torsion potential is positive. The results suggest that the randomly entanglement of molecular chains in EPDM networks is responsible for its low thermal conductivity.



Author(s):  
Bo Qiu ◽  
Lin Sun ◽  
Xiulin Ruan

In this paper, by employing the previously developed two-body interatomic potentials for bismuth telluride, molecular dynamics (MD) simulations are used to describe the thermoelectric properties, namely the lattice thermal conductivity, of Bi2Te3 nanowires. Cylindrical nanowires with both smooth surface and sawtooth surface roughness are studied, aiming at revealing the effects of phonon confinement in 1-D structures, phonon boundary scatterings and surface roughness on the lattice thermal conductivity of Bi2Te3 nanowires. In the end, the influence of various phonon scattering mechanisms on the nanostructures under study are summarized, possible paths to reduce lattice thermal conductivity in nanostructured Bi2Te3, which is favorable for enhancing thermoelectric performance, are pointed out.



2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zan Wang ◽  
X. Y. Cai ◽  
W. K. Zhao ◽  
H. Wang ◽  
Y. W. Ruan

In this work, we investigate the thermal conductivity properties of Si 1 − x Ge x and Si 0.8 Ge 0 Sn 2 y alloys. The equilibrium molecular dynamics (EMD) is employed to calculate the thermal conductivities of Si 1 − x Ge x alloys when x is different at temperatures ranging from 100 K to 1100 K. Then nonequilibrium molecular dynamics (NEMD) is used to study the relationships between y and the thermal conductivities of Si 0.8 Ge 0.2 Sn 2 y alloys. In this paper, Ge atoms are randomly doped, and tin atoms are doped in three distributing ways: random doping, complete doping, and bridge doping. The results show that the thermal conductivities of Si 1 − x Ge x alloys decrease first, then increase with the rise of x , and reach the lowest value when x changes from 0.4 to 0.5. No matter what the value of x is, the thermal conductivities of Si 1 − x Ge x alloys decrease with the increase of temperature. Thermal conductivities of Si 0.8 Ge 0.2 alloys can be significantly inhibited by doping an appropriate number of Sn atoms. For the random doping model, thermal conductivities of Si 0.8 Ge 0.2 Sn y alloys approach the lowest level when y is 0.10. Whether it is complete doping or bridge doping, thermal conductivities decrease with the increase of the number of doped layers. In addition, in the bridge doping model, both the number of Sn atoms in the [001] direction and the penetration distance of Sn atoms strongly influence thermal conductivities. The thermal conductivities of Si 0.8 Ge 0.2 Sn y alloys are positively associated with the number of Sn atoms in the [001] direction and the penetration distance of Sn atoms.



2021 ◽  
Vol 103 (3) ◽  
Author(s):  
Haikuan Dong ◽  
Shiyun Xiong ◽  
Zheyong Fan ◽  
Ping Qian ◽  
Yanjing Su ◽  
...  


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1982
Author(s):  
Paul Desmarchelier ◽  
Alice Carré ◽  
Konstantinos Termentzidis ◽  
Anne Tanguy

In this article, the effect on the vibrational and thermal properties of gradually interconnected nanoinclusions embedded in an amorphous silicon matrix is studied using molecular dynamics simulations. The nanoinclusion arrangement ranges from an aligned sphere array to an interconnected mesh of nanowires. Wave-packet simulations scanning different polarizations and frequencies reveal that the interconnection of the nanoinclusions at constant volume fraction induces a strong increase of the mean free path of high frequency phonons, but does not affect the energy diffusivity. The mean free path and energy diffusivity are then used to estimate the thermal conductivity, showing an enhancement of the effective thermal conductivity due to the existence of crystalline structural interconnections. This enhancement is dominated by the ballistic transport of phonons. Equilibrium molecular dynamics simulations confirm the tendency, although less markedly. This leads to the observation that coherent energy propagation with a moderate increase of the thermal conductivity is possible. These findings could be useful for energy harvesting applications, thermal management or for mechanical information processing.



Sign in / Sign up

Export Citation Format

Share Document