scholarly journals Altered Phenylpropanoid Metabolism in the Maize Lc-Expressed Sweet Potato (Ipomoea batatas) Affects Storage Root Development

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Hongxia Wang ◽  
Jun Yang ◽  
Min Zhang ◽  
Weijuan Fan ◽  
Nurit Firon ◽  
...  
2021 ◽  
Author(s):  
Fuyun Hou ◽  
Zhen Qin ◽  
Taifeng Du ◽  
Yuanyuan Zhou ◽  
Aixian Li ◽  
...  

Abstract BackgroundSweetpotato(Ipomoea batatas (L.) Lam.) is one of the most important crops with high storage roots yield. Lignin affects the storage root formation. However, the molecular mechanisms of lignin biosynthesis in storage roots development have been lacking.ResultsTo reveal the molecular mechanism of lignin biosynthesis and identify new homologous genes in lignin biosynthesis during storage root development, the storage root (SR) at three different stages (D1, D2 and D3) in the two cultivars (Jishu25 and Jishu29) was investigated with full-length and second-generation transcriptome. A total of 52,137 transcripts and 21,148 unigenes were obtained after corrected with Hiseq2500 sequencing. Through the comparative analysis, 9577 unigenes were found to be differently expressed in the different stage in two cultivars. Among of them, 91 unigenes enriched in the phenylpropanoid biosynthesis, and 201 unigenes in hormone signal transduction pathway with KEGG analysis. Weighted gene co-expression network analysis of differentially expressed unigenes showed that lignin biosynthesis genes might be co-expressed with transcription factors such as AP2/ERF and MYB at the transcription level, and regulated by phytohormones auxin and GA3.ConclusionsTaken together, our findings will throw light on molecular regulatory mechanism of lignin biosynthesis involved in storage root development.


2018 ◽  
Vol 19 (1) ◽  
pp. 171-190 ◽  
Author(s):  
Thangasamy Saminathan ◽  
Alejandra Alvarado ◽  
Carlos Lopez ◽  
Suhas Shinde ◽  
Bandara Gajanayake ◽  
...  

2015 ◽  
Vol 33 (6) ◽  
pp. 1731-1739 ◽  
Author(s):  
Runrun Sun ◽  
Tenglong Guo ◽  
Juliana Cobb ◽  
Qinglian Wang ◽  
Baohong Zhang

2021 ◽  
Author(s):  
Haoyun Sun ◽  
Jingzhao Mei ◽  
Wenqian Hou ◽  
Yang Zhang ◽  
Tao Xu ◽  
...  

Abstract Background As a major family of plant-specific transcription factors, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes play crucial regulatory roles in plant growth, development, and stress tolerance. SPL transcription factor family has been widely studied in various plant species, however, there are no systematic studies on SPL genes in genus Ipomoea. Results In this study, a total of 29, 27, 26, 23 SPL genes were identified in Ipomoea batatas, Ipomoea trifida, Ipomoea triloba, and Ipomoea nil, respectively. Phylogenetic analysis indicated that Ipomoea SPL genes could be clustered into eight clades. SPL members within the same clade showed similar gene structures, domain organizations, and cis-acting element compositions, suggesting similarity of biological function potentially. Evolutionary analysis revealed that segmental duplication events played a major role in the Ipomoea genus-specific expansion of SPL genes. Of these Ipomoea SPL genes, 69 were predicted as the target genes of miR156, and 7 IbSPL genes were further confirmed by degradome data. Additionally, IbSPL genes showed diverse expression patterns in various tissues, implying their functional conservation and divergence. Finally, by combining the information from expression patterns and regulatory sub-networks, we found that four IbSPL genes (IbSPL16/IbSPL17/IbSPL21/IbSPL28) may be involved in the formation and development of storage roots. Conclusions This study not only provides novel insights into the evolutionary and functional divergence of the SPL genes in all available sequenced species in genus Ipomoea, but also lays a foundation for further elucidation of the potential functional roles of IbSPL genes during storage root development.


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 110
Author(s):  
Li Sun ◽  
Yiyu Yang ◽  
Hong Pan ◽  
Jiahao Zhu ◽  
Mingku Zhu ◽  
...  

Sweet potato is a tuberous root crop with strong environmental stress resistance. It is beneficial to study its storage root formation and stress responses to identify sweet potato stress- and storage-root-thickening-related regulators. Here, six conserved miRNAs (miR156g, miR157d, miR158a-3p, miR161.1, miR167d and miR397a) and six novel miRNAs (novel 104, novel 120, novel 140, novel 214, novel 359 and novel 522) were isolated and characterized in sweet potato. Tissue-specific expression patterns suggested that miR156g, miR157d, miR158a-3p, miR167d, novel 359 and novel 522 exhibited high expression in fibrous roots or storage roots and were all upregulated in response to storage-root-related hormones (indole acetic acid, IAA; zeaxanthin, ZT; abscisic acid, ABA; and gibberellin, GAs). The expression of miR156g, miR158a-3p, miR167d, novel 120 and novel 214 was induced or reduced dramatically by salt, dehydration and cold or heat stresses. Moreover, these miRNAs were all upregulated by ABA, a crucial hormone modulator in regulating abiotic stresses. Additionally, the potential targets of the twelve miRNAs were predicted and analyzed. Above all, these results indicated that these miRNAs might play roles in storage root development and/or stress responses in sweet potato as well as provided valuable information for the further investigation of the roles of miRNA in storage root development and stress responses.


2000 ◽  
Vol 125 (2) ◽  
pp. 200-204 ◽  
Author(s):  
Don R. La Bonte ◽  
David H. Picha ◽  
Hester A. Johnson

The quantity and pattern of carbohydrate-related changes during storage root development differed among six sweetpotato cultivars [Ipomoea batatas (L.) Poir. `Beauregard', `Heart-o-Gold', `Jewel', `Rojo Blanco', `Travis', and `White Star']. Measurements were taken for individual sugars, total sugars, alcohol-insoluble solids (AIS, crude starch), and dry weight (DW) at 2-week intervals from 7 to 19 weeks after transplanting (WAT) in two separate years. Sucrose was the major sugar during all stages of development, representing at least 68% of total sugars across all cultivars and dates. Pairwise comparisons showed `Heart-o-Gold' had the highest sucrose content among the cultivars. Sucrose content increased by 56% for `Heart-o-Gold' over the 12 weeks of assay, ranking first among the cultivars at 17 and 19 WAT and possessing 27% more sucrose than the next highest ranking cultivar, `Jewel', at 19 WAT. Fructose content profiles varied among and within cultivars. `Beauregard' showed a consistent increase in fructose throughout development while `Whitestar' showed a consistent decrease. The other cultivars were inconsistent in their fructose content profiles. Glucose content profiles were similar to those for fructose changes during development. The relationship between monosaccharides was fructose = 0.7207 × glucose + 0.0241. Cultivars with the highest fructose and glucose content could be selected by breeders after 13 WAT. Early clonal selection for high sucrose and total sugars is less promising because substantive changes in clonal rank occurred for sucrose and total sugars after 15 WAT. Cultivars ranking the highest in total sugars had either more monosaccharides to compensate for a lower sucrose content or more sucrose to compensate for a lower monosaccharide content. The relationship between DW and AIS was similar (AIS = 0.00089 × DW), and DW and AIS increased with time for most cultivars. Cultivars with high DW and AIS can be selected early during storage root development.


2016 ◽  
Vol 42 (11) ◽  
pp. 1727
Author(s):  
Yang-Yang LI ◽  
Cong FEI ◽  
Jing CUI ◽  
Kai-Yong WANG ◽  
Fu-Yu MA ◽  
...  

Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Michael Gomez Selvaraj ◽  
Maria Elker Montoya-P ◽  
John Atanbori ◽  
Andrew P. French ◽  
Tony Pridmore

Abstract Background Root and tuber crops are becoming more important for their high source of carbohydrates, next to cereals. Despite their commercial impact, there are significant knowledge gaps about the environmental and inherent regulation of storage root (SR) differentiation, due in part to the innate problems of studying storage roots and the lack of a suitable model system for monitoring storage root growth. The research presented here aimed to develop a reliable, low-cost effective system that enables the study of the factors influencing cassava storage root initiation and development. Results We explored simple, low-cost systems for the study of storage root biology. An aeroponics system described here is ideal for real-time monitoring of storage root development (SRD), and this was further validated using hormone studies. Our aeroponics-based auxin studies revealed that storage root initiation and development are adaptive responses, which are significantly enhanced by the exogenous auxin supply. Field and histological experiments were also conducted to confirm the auxin effect found in the aeroponics system. We also developed a simple digital imaging platform to quantify storage root growth and development traits. Correlation analysis confirmed that image-based estimation can be a surrogate for manual root phenotyping for several key traits. Conclusions The aeroponic system developed from this study is an effective tool for examining the root architecture of cassava during early SRD. The aeroponic system also provided novel insights into storage root formation by activating the auxin-dependent proliferation of secondary xylem parenchyma cells to induce the initial root thickening and bulking. The developed system can be of direct benefit to molecular biologists, breeders, and physiologists, allowing them to screen germplasm for root traits that correlate with improved economic traits.


Sign in / Sign up

Export Citation Format

Share Document