scholarly journals How Do the Size, Charge and Shape of Nanoparticles Affect Amyloid β Aggregation on Brain Lipid Bilayer?

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Yuna Kim ◽  
Ji-Hyun Park ◽  
Hyojin Lee ◽  
Jwa-Min Nam

Abstract Here, we studied the effect of the size, shape and surface charge of Au nanoparticles (AuNPs) on amyloid beta (Aβ) aggregation on a total brain lipid-based supported lipid bilayer (brain SLB), a fluid platform that facilitates Aβ-AuNP aggregation process. We found that larger AuNPs induce large and amorphous aggregates on the brain SLB, whereas smaller AuNPs induce protofibrillar Aβ structures. Positively charged AuNPs were more strongly attracted to Aβ than negatively charged AuNPs and the stronger interactions between AuNPs and Aβ resulted in fewer β-sheets and more random coil structures. We also compared spherical AuNPs, gold nanorods (AuNRs) and gold nanocubes (AuNCs) to study the effect of nanoparticle shape on Aβ aggregation on the brain SLB. Aβ was preferentially bound to the long axis of AuNRs and fewer fibrils were formed whereas all the facets of AuNCs interacted with Aβ to produce the fibril networks. Finally, it was revealed that different nanostructures induce different cytotoxicity on neuroblastoma cells, and, overall, smaller Aβ aggregates induce higher cytotoxicity. The results offer insight into the roles of NPs and brain SLB in Aβ aggregation on the cell membrane and can facilitate the understanding of Aβ-nanostructure co-aggregation mechanism and tuning Aβ aggregate structures.

2020 ◽  
Author(s):  
Simone Mwenda Crivelli ◽  
Qian Luo ◽  
Jo Stevens ◽  
Caterina Giovagnoni ◽  
Daan van Kruining ◽  
...  

Abstract Background: Deregulation of ceramide and sphingomyelin levels have been suggested to contribute to the pathogenesis of Alzheimer’s disease (AD). Ceramide transfer proteins (CERTs) are ceramide carriers, crucial for ceramide and sphingomyelin balance in cells. Extracellular forms of CERTs co-localize with amyloid-β (Aβ) plaques in AD brains. To date, the significance of these observations for the pathophysiology of AD remains uncertain.Methods: The plasmid expressing CERTL, the long isoform of CERTs, was used to study the interaction of CERTL with amyloid precursor protein (APP) by co-immunoprecipitation and immunofluorescence in HEK cells. The recombinant CERTL protein was employed to study interaction of CERTL with amyloid-β (Aβ), Aβ aggregation process in presence of CERTL, and the resulting changes in Aβ toxicity in neuroblastoma cells. CERTL was overexpressed in neurons by adeno associated virus (AAV) in a familial mouse model of familial AD (5xFAD). Ten weeks after transduction animal were challenged with behavior tests for memory, anxiety and locomotion. At week twelve brains were investigated for sphingolipid levels by mass spectrometry, plaques and neuroinflammation by immunohistochemistry, gene expression and/or immunoassay.Results: Here, we report that CERTL, binds to APP, modifies Aβ aggregation and reduces Aβ neurotoxicity in vitro. Furthermore, we show that intracortical injection of AAV, mediating the expression of CERTL, decreases levels of ceramide d18:1/16:0 and increases sphingomyelin levels in the brain of male transgenic mice, modelling familial AD (5xFAD). CERTL in vivo over-expression has a mild effect on animal locomotion and decreases Aβ formation and modulates microglia by decreasing their pro-inflammatory phenotype.Conclusion: Our results demonstrate a crucial role of CERTL in regulating ceramide levels in the brain, in amyloid plaque formation and neuroinflammation, thereby opening research avenues for therapeutic targets of AD and other neurodegenerative diseases.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Simone M. Crivelli ◽  
Qian Luo ◽  
Jo A.A. Stevens ◽  
Caterina Giovagnoni ◽  
Daan van Kruining ◽  
...  

Abstract Background Dysregulation of ceramide and sphingomyelin levels have been suggested to contribute to the pathogenesis of Alzheimer’s disease (AD). Ceramide transfer proteins (CERTs) are ceramide carriers which are crucial for ceramide and sphingomyelin balance in cells. Extracellular forms of CERTs co-localize with amyloid-β (Aβ) plaques in AD brains. To date, the significance of these observations for the pathophysiology of AD remains uncertain. Methods A plasmid expressing CERTL, the long isoform of CERTs, was used to study the interaction of CERTL with amyloid precursor protein (APP) by co-immunoprecipitation and immunofluorescence in HEK cells. The recombinant CERTL protein was employed to study interaction of CERTL with amyloid-β (Aβ), Aβ aggregation process in presence of CERTL, and the resulting changes in Aβ toxicity in neuroblastoma cells. CERTL was overexpressed in neurons by adeno-associated virus (AAV) in a mouse model of familial AD (5xFAD). Ten weeks after transduction, animals were challenged with behavior tests for memory, anxiety, and locomotion. At week 12, brains were investigated for sphingolipid levels by mass spectrometry, plaques, and neuroinflammation by immunohistochemistry, gene expression, and/or immunoassay. Results Here, we report that CERTL binds to APP, modifies Aβ aggregation, and reduces Aβ neurotoxicity in vitro. Furthermore, we show that intracortical injection of AAV, mediating the expression of CERTL, decreases levels of ceramide d18:1/16:0 and increases sphingomyelin levels in the brain of male 5xFAD mice. CERTL in vivo over-expression has a mild effect on animal locomotion, decreases Aβ formation, and modulates microglia by decreasing their pro-inflammatory phenotype. Conclusion Our results demonstrate a crucial role of CERTL in regulating ceramide levels in the brain, in amyloid plaque formation and neuroinflammation, thereby opening research avenues for therapeutic targets of AD and other neurodegenerative diseases.


2021 ◽  
Author(s):  
Simone Mwenda Crivelli ◽  
Qian Luo ◽  
Jo A.A. Stevens ◽  
Caterina Giovagnoni ◽  
Daan van Kruining ◽  
...  

Abstract Background: Dysregulation of ceramide and sphingomyelin levels have been suggested to contribute to the pathogenesis of Alzheimer’s disease (AD). Ceramide transfer proteins (CERTs) are ceramide carriers which are crucial for ceramide and sphingomyelin balance in cells. Extracellular forms of CERTs co-localize with amyloid-β (Aβ) plaques in AD brains. To date, the significance of these observations for the pathophysiology of AD remains uncertain.Methods: A plasmid expressing CERTL, the long isoform of CERTs, was used to study the interaction of CERTL with amyloid precursor protein (APP) by co-immunoprecipitation and immunofluorescence in HEK cells. The recombinant CERTL protein was employed to study interaction of CERTL with amyloid-β (Aβ), Aβ aggregation process in presence of CERTL, and the resulting changes in Aβ toxicity in neuroblastoma cells. CERTL was overexpressed in neurons by adeno associated virus (AAV) in a mouse model of familial AD (5xFAD). Ten weeks after transduction, animals were challenged with behavior tests for memory, anxiety and locomotion. At week twelve, brains were investigated for sphingolipid levels by mass spectrometry, plaques and neuroinflammation by immunohistochemistry, gene expression and/or immunoassay.Results: Here, we report that CERTL, binds to APP, modifies Aβ aggregation and reduces Aβ neurotoxicity in vitro. Furthermore, we show that intracortical injection of AAV, mediating the expression of CERTL, decreases levels of ceramide d18:1/16:0 and increases sphingomyelin levels in the brain of male 5xFAD mice. CERTL in vivo over-expression has a mild effect on animal locomotion, decreases Aβ formation and modulates microglia by decreasing their pro-inflammatory phenotype.Conclusion: Our results demonstrate a crucial role of CERTL in regulating ceramide levels in the brain, in amyloid plaque formation and neuroinflammation, thereby opening research avenues for therapeutic targets of AD and other neurodegenerative diseases.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Rodrigo Cataldi ◽  
Sean Chia ◽  
Katarina Pisani ◽  
Francesco S. Ruggeri ◽  
Catherine K. Xu ◽  
...  

AbstractAberrant soluble oligomers formed by the amyloid-β peptide (Aβ) are major pathogenic agents in the onset and progression of Alzheimer’s disease. A variety of biomolecules can influence the formation of these oligomers in the brain, although their mechanisms of action are still largely unknown. Here, we studied the effects on Aβ aggregation of DOPAL, a reactive catecholaldehyde intermediate of dopamine metabolism. We found that DOPAL is able to stabilize Aβ oligomeric species, including dimers and trimers, that exert toxic effects on human neuroblastoma cells, in particular increasing cytosolic calcium levels and promoting the generation of reactive oxygen species. These results reveal an interplay between Aβ aggregation and key biochemical processes regulating cellular homeostasis in the brain.


2020 ◽  
Author(s):  
Simone Mwenda Crivelli ◽  
Qian Luo ◽  
Jo Stevens ◽  
Caterina Giovagnoni ◽  
Daan van Kruining ◽  
...  

Abstract Background: Dysregulation of ceramide and sphingomyelin levels have been suggested to contribute to the pathogenesis of Alzheimer’s disease (AD). Ceramide transfer proteins (CERTs) are ceramide carriers, crucial for ceramide and sphingomyelin balance in cells. Extracellular forms of CERTs co-localize with amyloid-β (Aβ) plaques in AD brains. To date, the significance of these observations for the pathophysiology of AD remains uncertain.Methods: The plasmid expressing CERTL, the long isoform of CERTs, was used to study the interaction of CERTL with amyloid precursor protein (APP) by co-immunoprecipitation and immunofluorescence in HEK cells. The recombinant CERTL protein was employed to study interaction of CERTL with amyloid-β (Aβ), Aβ aggregation process in presence of CERTL, and the resulting changes in Aβ toxicity in neuroblastoma cells. CERTL was overexpressed in neurons by adeno associated virus (AAV) in a familial mouse model of familial AD (5xFAD). Ten weeks after transduction, animals were challenged with behavior tests for memory, anxiety and locomotion. At week twelve, brains were investigated for sphingolipid levels by mass spectrometry, plaques and neuroinflammation by immunohistochemistry, gene expression and/or immunoassay.Results: Here, we report that CERTL, binds to APP, modifies Aβ aggregation and reduces Aβ neurotoxicity in vitro. Furthermore, we show that intracortical injection of AAV, mediating the expression of CERTL, decreases levels of ceramide d18:1/16:0 and increases sphingomyelin levels in the brain of male 5xFAD mice. CERTL in vivo over-expression has a mild effect on animal locomotion, decreases Aβ formation and modulates microglia by decreasing their pro-inflammatory phenotype.Conclusion: Our results demonstrate a crucial role of CERTL in regulating ceramide levels in the brain, in amyloid plaque formation and neuroinflammation, thereby opening research avenues for therapeutic targets of AD and other neurodegenerative diseases.


2020 ◽  
Author(s):  
Simone Mwenda Crivelli ◽  
Qian Luo ◽  
Jo Stevens ◽  
Caterina Giovagnoni ◽  
Daan van Kruining ◽  
...  

Abstract Background: Deregulation of ceramide and sphingomyelinlevels have been suggested tocontribute tothe pathogenesis of Alzheimer’s disease (AD).Ceramide transfer proteins (CERTs) are ceramide carriers, crucial for ceramide and sphingomyelin balance in cells.Extracellular forms of CERTs co-localize with amyloid-β (Aβ) plaques in AD brains. To date, the significance of these observations for the pathophysiology of AD remains uncertain.Methods: The plasmid expressing CERTL, the long isoform of CERTs, was used to study the interaction of CERTLwith amyloid precursor protein (APP) by co-immunoprecipitation and immunofluorescencein HEK cells.The recombinant CERTL protein wasemployed to study interaction of CERTLwith amyloid-β (Aβ), Aβ aggregation process in presence of CERTL, and the resulting changes inAβ toxicity in neuroblastoma cells. CERTLwas overexpressed in neurons by adeno associatedvirus (AAV) in a familial mouse model of familial AD (5xFAD). Ten weeks after transduction animal were challenged with behavior tests for memory, anxiety and locomotion. At week twelve brains were investigated for sphingolipid levels by mass spectrometry, plaques and neuroinflammation by immunohistochemistry, gene expression and/or immunoassay.Results:Here, we report that CERTL, binds to APP, modifies Aβ aggregation and reduces Aβ neurotoxicity in vitro. Furthermore, we show that intracortical injection of AAV, mediating the expression of CERTL, decreases levels of ceramide d18:1/16:0 and increases sphingomyelin levels in the brain of male transgenic mice, modelling familial AD (5xFAD). CERTLin vivo over-expression hasa mild effect on animal locomotion and decreases Aβ formation and modulates microglia by decreasing their pro-inflammatory phenotype.Conclusion: Our results demonstratea crucial role of CERTL in regulatingceramidelevels in the brain, in amyloid plaque formation and neuroinflammation,thereby opening research avenuesfor therapeutic targets of AD and other neurodegenerative diseases.


Small ◽  
2014 ◽  
Vol 10 (9) ◽  
pp. 1779-1789 ◽  
Author(s):  
Hyojin Lee ◽  
Yuna Kim ◽  
Anna Park ◽  
Jwa-Min Nam

2020 ◽  
Vol 21 (3) ◽  
pp. 1066
Author(s):  
Roberta Corti ◽  
Alysia Cox ◽  
Valeria Cassina ◽  
Luca Nardo ◽  
Domenico Salerno ◽  
...  

The deposition of amyloid-β (Aβ) plaques in the brain is a significant pathological signature of Alzheimer’s disease, correlating with synaptic dysfunction and neurodegeneration. Several compounds, peptides, or drugs have been designed to redirect or stop Aβ aggregation. Among them, the trideca-peptide CWG-LRKLRKRLLR (mApoE), which is derived from the receptor binding sequence of apolipoprotein E, is effectively able to inhibit Aβ aggregation and to promote fibril disaggregation. Taking advantage of Atomic Force Microscopy (AFM) imaging and fluorescence techniques, we investigate if the clustering of mApoE on gold nanoparticles (AuNP) surface may affect its performance in controlling Aβ aggregation/disaggregation processes. The results showed that the ability of free mApoE to destroy preformed Aβ fibrils or to hinder the Aβ aggregation process is preserved after its clustering on AuNP. This allows the possibility to design multifunctional drug delivery systems with clustering of anti-amyloidogenic molecules on any NP surface without affecting their performance in controlling Aβ aggregation processes.


2021 ◽  
Author(s):  
Shailendra Dhakal ◽  
Jhinuk Saha ◽  
Courtney E Wyant ◽  
Vijayaraghavan Rangachari

It is increasingly becoming clear that neurodegenerative diseases are not as discrete as originally thought to be but rather display significant overlap in histopathological and clinical presentations. For example, nearly half of the patients with Alzheimer disease (AD) and synucleinopathies such as Parkinson disease (PD) show symptoms and pathological features of one another. Yet, the molecular events and features that underlie such comorbidities in neurodegenerative diseases remain poorly understood. Here, inspired to uncover the molecular underpinnings of the overlap between AD and PD, we investigated the interactions between amyloid-β (Aβ) and α-synuclein (αS), aggregates of which form the major components of amyloid plaques and Lewy bodies, respectively. Specifically, we focused on αS oligomers generated from the dopamine metabolite called dihydroxyphenylacetaldehyde (DOPAL), and a polyunsaturated fatty acid docosahexaenoic acid (DHA). Both αS oligomers showed structural and conformational differences confirmed by their disparity in size, secondary structure, susceptibility to proteinase K digestion and cytotoxicity. More importantly, the two oligomers differentially modulated Aβ aggregation. While both oligomers inhibited Aβ aggregation to varying extents, they induced structurally different Aβ assemblies. Furthermore, Aβ seeded with DHA-derived αS oligomers showed greater toxicity than DOPAL-derived αS oligomers in SH-SY5Y neuroblastoma cells. These results provide insights into the interactions between two amyloid proteins with empirically distinctive biophysical and cellular manifestations, enunciating a basis for potentially ubiquitous cross-amyloid interactions across many neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document