scholarly journals Urinary arsenic profiles reveal exposures to inorganic arsenic from private drinking water supplies in Cornwall, UK

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
D. R. S. Middleton ◽  
M. J. Watts ◽  
E. M. Hamilton ◽  
E. L. Ander ◽  
R. M. Close ◽  
...  
2015 ◽  
Vol 2015 (1) ◽  
pp. 3003
Author(s):  
Dan Middleton ◽  
Tony Fletcher ◽  
Michael Watts ◽  
Elliott Hamilton ◽  
Louise Ander ◽  
...  

2005 ◽  
Vol 98 (2) ◽  
pp. 151-159 ◽  
Author(s):  
Dante D. Caceres ◽  
Paulina Pino ◽  
Nestor Montesinos ◽  
Eduardo Atalah ◽  
Hugo Amigo ◽  
...  

2002 ◽  
Vol 2 (3) ◽  
pp. 17-22
Author(s):  
A.P. Wyn-Jones ◽  
J. Watkins ◽  
C. Francis ◽  
M. Laverick ◽  
J. Sellwood

Two rural spring drinking water supplies were studied for their enteric virus levels. In one, serving about 30 dwellings, the water was chlorinated before distribution; in the other, which served a dairy and six dwellings the water was not treated. Samples of treated (40 l) and untreated (20 l) water were taken under normal and heavy rainfall conditions over a six weeks period and concentrated by adsorption/elution and organic flocculation. Infectious enterovirus in concentrates was detected in liquid culture and enumerated by plaque assay, both in BGM cells, and concentrates were also analysed by RT-PCR. Viruses were found in both raw water supplies. Rural supplies need to be analysed for viruses as well as bacterial and protozoan pathogens if the full microbial hazard is to be determined.


2003 ◽  
Vol 3 (1-2) ◽  
pp. 187-191
Author(s):  
M.M. Critchley ◽  
N.J. Cromar ◽  
H.J. Fallowfield

Biofilms have been extensively characterised within drinking water distribution systems. However, the significance of materials on biofilm species diversity is not established. This study investigated the community composition of biofilms on plumbing materials receiving filtered and unfiltered water supplies. Biofilms were extracted from polybutylene, polyethylene, cross-linked polyethylene, unplasticised polyvinyl chloride and copper tubes in sampling rigs receiving Murray-Onkaparinga water before or after filtration. Biofilms were extracted and analysed for fatty acid composition using the FAME™ methodology. There were differences in the fatty acid profiles of biofilms and the respective water supplies, indicating differences in the attached and planktonic communities. The results also showed significant differences in the fatty acid profiles of biofilms on the polymer materials compared to copper, suggesting variations in biofilm populations on the different materials. The potential for materials to select for microbial populations has significant implications for the ecology of drinking water biofilms.


1991 ◽  
Vol 23 (1-3) ◽  
pp. 201-209 ◽  
Author(s):  
W. Kreisel

Water quality can affect human health in various ways: through breeding of vectors, presence of pathogenic protozoa, helminths, bacteria and viruses, or through inorganic and organic chemicals. While traditional concern has been with pathogens and gastro-intestinal diseases, chemical pollutants in drinking-water supplies have in many instances reached proportions which affect human health, especially in cases of chronic exposure. Treatment of drinking-water, often grossly inadequate in developing countries, is the last barrier of health protection, but control at source is more effective for pollution control. Several WHO programmes of the International Drinking-Water Supply and Sanitation Decade have stimulated awareness of the importance of water quality in public water supplies. Three main streams have been followed during the eighties: guidelines for drinking-water quality, guidelines for wastewater reuse and the monitoring of freshwater quality. Following massive investments in the community water supply sector to provide people with adequate quantities of drinking-water, it becomes more and more important to also guarantee minimum quality standards. This has been recognized by many water and health authorities in developing countries and, as a result, WHO cooperates with many of them in establishing water quality laboratories and pollution control programmes.


2015 ◽  
Vol 81 ◽  
pp. 38-46 ◽  
Author(s):  
J.P.R. Sorensen ◽  
D.J. Lapworth ◽  
B.P. Marchant ◽  
D.C.W. Nkhuwa ◽  
S. Pedley ◽  
...  

2006 ◽  
Vol 228 (1-3) ◽  
pp. 72-84 ◽  
Author(s):  
Stephen C. Peters ◽  
Joel D. Blum ◽  
Margaret R. Karagas ◽  
C. Page Chamberlain ◽  
Derek J. Sjostrom

Sign in / Sign up

Export Citation Format

Share Document