scholarly journals Adipose- and muscle-derived Wnts trigger pancreatic β-cell adaptation to systemic insulin resistance

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Kamil Kozinski ◽  
Magdalena Jazurek ◽  
Pawel Dobrzyn ◽  
Justyna Janikiewicz ◽  
Katarzyna Kolczynska ◽  
...  
2014 ◽  
Vol 306 (10) ◽  
pp. E1163-E1175 ◽  
Author(s):  
Hisashi Yokomizo ◽  
Toyoshi Inoguchi ◽  
Noriyuki Sonoda ◽  
Yuka Sakaki ◽  
Yasutaka Maeda ◽  
...  

Intrauterine environment may influence the health of postnatal offspring. There have been many studies on the effects of maternal high-fat diet (HFD) on diabetes and glucose metabolism in offspring. Here, we investigated the effects in male and female offspring. C57/BL6J mice were bred and fed either control diet (CD) or HFD from conception to weaning, and offspring were fed CD or HFD from 6 to 20 wk. At 20 wk, maternal HFD induced glucose intolerance and insulin resistance in offspring. Additionally, liver triacylglycerol content, adipose tissue mass, and inflammation increased in maternal HFD. In contrast, extending previous observations, insulin secretion at glucose tolerance test, islet area, insulin content, and PDX-1 mRNA levels in isolated islets were lower in maternal HFD in males, whereas they were higher in females. Oxidative stress in islets increased in maternal HFD in males, whereas there were no differences in females. Plasma estradiol levels were lower in males than in females and decreased in offspring fed HFD and also decreased by maternal HFD, suggesting that females may be protected from insulin deficiency by inhibiting oxidative stress. In conclusion, maternal HFD induced insulin resistance and deterioration of pancreatic β-cell function, with marked sex differences in adult offspring accompanied by adipose tissue inflammation and liver steatosis. Additionally, our results demonstrate that potential mechanisms underlying sex differences in pancreatic β-cell function may be related partially to increases in oxidative stress in male islets and decreased plasma estradiol levels in males.


Biomolecules ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1057
Author(s):  
Blandine Gausserès ◽  
Junjun Liu ◽  
Ewout Foppen ◽  
Cécile Tourrel-Cuzin ◽  
Ana Rodriguez Sanchez-Archidona ◽  
...  

Objective: Type 2 diabetes (T2D) occurs by deterioration in pancreatic β-cell function and/or progressive loss of pancreatic β-cell mass under the context of insulin resistance. α7 nicotinic acetylcholine receptor (nAChR) may contribute to insulin sensitivity but its role in the pathogenesis of T2D remains undefined. We investigated whether the systemic lack of α7 nAChR was sufficient to impair glucose homeostasis. Methods: We used an α7 nAChR knock-out (α7−/−) mouse model fed a standard chow diet. The effects of the lack of α7 nAChR on islet mass, insulin secretion, glucose and insulin tolerance, body composition, and food behaviour were assessed in vivo and ex vivo experiments. Results: Young α7−/− mice display a chronic mild high glycemia combined with an impaired glucose tolerance and a marked deficit in β-cell mass. In addition to these metabolic disorders, old mice developed adipose tissue inflammation, elevated plasma free fatty acid concentrations and presented glycolytic muscle insulin resistance in old mice. Finally, α7−/− mice, fed a chow diet, exhibited a late-onset excessive gain in body weight through increased fat mass associated with higher food intake. Conclusion: Our work highlights the important role of α7 nAChR in glucose homeostasis. The constitutive lack of α7 nAChR suggests a novel pathway influencing the pathogenesis of T2D.


2016 ◽  
Vol 310 (8) ◽  
pp. E662-E675 ◽  
Author(s):  
Yu Yasutake ◽  
Akiko Mizokami ◽  
Tomoyo Kawakubo-Yasukochi ◽  
Sakura Chishaki ◽  
Ichiro Takahashi ◽  
...  

Uncarboxylated osteocalcin (GluOC), a bone-derived hormone, regulates energy metabolism by stimulating insulin secretion, pancreatic β-cell proliferation, and adiponectin expression in adipocytes. Previously, we showed that long-term intermittent or daily oral administration of GluOC reduced the fasting blood glucose level, improved glucose tolerance, and increased the fasting serum insulin concentration as well as pancreatic β-cell area in female mice fed a normal or high-fat, high-sucrose diet. We have now performed similar experiments with male mice and found that such GluOC administration induced glucose intolerance, insulin resistance, and adipocyte hypertrophy in those fed a high-fat, high-sucrose diet. In addition, GluOC increased the circulating concentration of testosterone and reduced that of adiponectin in such mice. These phenotypes were not observed in male mice fed a high-fat, high-sucrose diet after orchidectomy, but they were apparent in orchidectomized male mice or intact female mice that were fed such a diet and subjected to continuous testosterone supplementation. Our results thus reveal a sex difference in the effects of GluOC on glucose homeostasis. Given that oral administration of GluOC has been considered a potentially safe and convenient option for the treatment or prevention of metabolic disorders, this sex difference will need to be taken into account in further investigations.


2011 ◽  
Vol 57 (4) ◽  
pp. 627-632 ◽  
Author(s):  
Barry R Johns ◽  
Fahim Abbasi ◽  
Gerald M Reaven

BACKGROUND Several surrogate estimates have been used to define relationships between insulin action and pancreatic β-cell function in healthy individuals. Because it is unclear how conclusions about insulin secretory function depend on specific estimates used, we evaluated the effect of different approaches to measurement of insulin action and secretion on observations of pancreatic β-cell function in individuals whose fasting plasma glucose (FPG) was <7.0 mmol/L (126 mg/dL). METHODS We determined 2 indices of insulin secretion [homeostasis model assessment of β-cell function (HOMA-β) and daylong insulin response to mixed meals], insulin action [homeostasis model assessment of insulin resistance (HOMA-IR) and steady-state plasma glucose (SSPG) concentration during the insulin suppression test], and degree of glycemia [fasting plasma glucose (FPG) and daylong glucose response to mixed meals] in 285 individuals with FPG <7.0 mmol/L. We compared the relationship between the 2 measures of insulin secretion as a function of the measures of insulin action and degree of glycemia. RESULTS Assessment of insulin secretion varied dramatically as a function of which of the 2 methods was used and which measure of insulin resistance or glycemia served as the independent variable. For example, the correlation between insulin secretion (HOMA-β) and insulin resistance varied from an r value of 0.74 (when HOMA-IR was used) to 0.22 (when SSPG concentration was used). CONCLUSIONS Conclusions about β-cell function in nondiabetic individuals depend on the measurements used to assess insulin action and insulin secretion. Viewing estimates of insulin secretion in relationship to measures of insulin resistance and/or degree of glycemia does not mean that an unequivocal measure of pancreatic β-cell function has been obtained.


2010 ◽  
Vol 299 (6) ◽  
pp. E1006-E1015 ◽  
Author(s):  
José E. Nicoletti-Carvalho ◽  
Camilo Lellis-Santos ◽  
Tatiana S. Yamanaka ◽  
Tatiane C. Nogueira ◽  
Luciana C. Caperuto ◽  
...  

Maternal pancreatic islets undergo a robust increase of mass and proliferation during pregnancy, which allows a compensation of gestational insulin resistance. Studies have described that this adaptation switches to a low proliferative status after the delivery. The mechanisms underlying this reversal are unknown, but the action of glucocorticoids (GCs) is believed to play an important role because GCs counteract the pregnancy-like effects of PRL on isolated pancreatic islets maintained in cell culture. Here, we demonstrate that ERK1/2 phosphorylation (phospho-ERK1/2) is increased in maternal rat islets isolated on the 19th day of pregnancy. Phospho-ERK1/2 status on the 3rd day after delivery (L3) rapidly turns to values lower than that found in virgin control rats (CTL). MKP-1, a protein phosphatase able to dephosphorylate ERK1/2, is increased in islets from L3 rats. Chromatin immunoprecipitation assay revealed that binding of glucocorticoid receptor (GR) to MKP-1 promoter is also increased in islets from L3 rats. In addition, dexamethasone (DEX) reduced phospho-ERK1/2 and increased MKP-1 expression in RINm5F and MIN-6 cells. Inhibition of transduction with cycloheximide and inhibition of phosphatases with orthovanadate efficiently blocked DEX-induced downregulation of phospho-ERK1/2. In addition, specific knockdown of MKP-1 with siRNA suppressed the downregulation of phospho-ERK1/2 and the reduction of proliferation induced by DEX. Altogether, our results indicate that downregulation of phospho-ERK1/2 is associated with reduction in proliferation found in islets of early lactating mothers. This mechanism is probably mediated by GC-induced MKP-1 expression.


2006 ◽  
Vol 114 (1) ◽  
pp. 106-112 ◽  
Author(s):  
Paloma Alonso-Magdalena ◽  
Sumiko Morimoto ◽  
Cristina Ripoll ◽  
Esther Fuentes ◽  
Angel Nadal

Sign in / Sign up

Export Citation Format

Share Document