scholarly journals Transcriptome profiling shows gene regulation patterns in ginsenoside pathway in response to methyl jasmonate in Panax Quinquefolium adventitious root

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Juan Wang ◽  
Jinxin Li ◽  
Jianli Li ◽  
Shujie Liu ◽  
Xiaolei Wu ◽  
...  

2012 ◽  
Vol 40 (3) ◽  
pp. 2231-2241 ◽  
Author(s):  
Su-Fang Ee ◽  
Ji-Min Oh ◽  
Normah Mohd Noor ◽  
Taek-Ryoun Kwon ◽  
Zeti-Azura Mohamed-Hussein ◽  
...  




2020 ◽  
Author(s):  
Haishan An ◽  
Jiaying Zhang ◽  
Fangjie Xu ◽  
Shuang Jiang ◽  
Xueying Zhang

Abstract Background: Propagation of cuttings is frequently used in various plant species, including blueberry, which shows special root characteristics that may hinder adventitious root (AR) formation. AR formation is influenced by various factors, and auxin is considered to play a central role; however, little is known of the related regulatory mechanisms. In this study, a comparative transcriptome analysis of green cuttings treated with or without indole-butyric acid (IBA) was performed via RNA_seq to identify candidate genes associated with IBA-induced AR formation.Results: Rooting phenotypes, especially the rooting rate, were significantly promoted by exogenous auxin in the IBA application. Blueberry AR formation was an auxin-induced process, during which adventitious root primordium initiation (rpi) began at 14 days after cutting (DAC), root primordium (rp) was developed at 21 DAC, mature AR was observed at 28 DAC and finally outgrowth from the stem occurred at 35 DAC. Higher IAA levels and lower ABA and zeatin contents might facilitate AR formation and development. A time series transcriptome analysis identified 14970 differentially expressed genes (DEGs) during AR formation, of which there were 7467 upregulated and 7503 downregulated genes. Of these, approximately 35 candidate DEGs involved in the auxin-induced pathway and AR formation were further identified, including 10 auxin respective genes (ARFs and SAURs), 13 transcription factors (LOB domain-containing protein (LBDs)), 6 auxin transporters (AUX22, LAX3/5 and PIN-like 6 (PIL6s)) and 6 rooting-associated genes (root meristem growth factor 9 (RGF9), lateral root primordium 1 (LRP1s), and dormancy-associated protein homologue 3 (DRMH3)). All these identified DEGs were highly upregulated in certain stages during AR formation, indicating their potential roles in blueberry AR formation.Conclusions: The transcriptome profiling results indicated candidate genes or major regulatory factors that influence adventitious root formation in blueberry and provided a comprehensive understanding of the rooting mechanism underlying the auxin-induced AR formation from blueberry green cuttings.



2013 ◽  
Vol 40 (3) ◽  
pp. 178-183 ◽  
Author(s):  
Hyun-Jung Hwang ◽  
Gwanpill Song ◽  
Mi-Hyang Kim ◽  
Seon-Gil Do ◽  
Kee-Hwa Bae


2020 ◽  
Author(s):  
Haishan An ◽  
Jiaying Zhang ◽  
Fangjie Xu ◽  
Shuang Jiang ◽  
Xueying Zhang

Abstract Background: Propagation of cuttings is frequently used in various plant species, including blueberry, which shows special root characteristics that may hinder adventitious root (AR) formation. AR formation is influenced by various factors, and auxin is considered to play a central role; however, little is known of the related regulatory mechanisms. In this study, a comparative transcriptome analysis of green cuttings treated with or without indole-butyric acid (IBA) was performed via RNA_seq to identify candidate genes associated with IBA-induced AR formation. Results: Rooting phenotypes, especially the rooting rate, were significantly promoted by exogenous auxin in the IBA application. Blueberry AR formation was an auxin-induced process, during which adventitious root primordium initiation (rpi) began at 14 days after cutting (DAC), root primordium (rp) was developed at 21 DAC, mature AR was observed at 28 DAC and finally outgrowth from the stem occurred at 35 DAC. Higher IAA levels and lower ABA and zeatin contents might facilitate AR formation and development. A time series transcriptome analysis identified 14970 differentially expressed genes (DEGs) during AR formation, of which there were 7467 upregulated and 7503 downregulated genes. Of these, approximately 35 candidate DEGs involved in the auxin-induced pathway and AR formation were further identified, including 10 auxin respective genes ( ARFs and SAURs ), 13 transcription factors ( LOB domain-containing protein ( LBD s)), 6 auxin transporters ( AUX22 , LAX3/5 and PIN-like 6 ( PIL6s )) and 6 rooting-associated genes ( root meristem growth factor 9 ( RGF9 ), lateral root primordium 1 ( LRP1s ), and dormancy-associated protein homologue 3 ( DRMH3 )). All these identified DEGs were highly upregulated in certain stages during AR formation, indicating their potential roles in blueberry AR formation. Conclusions: The transcriptome profiling results indicated candidate genes or major regulatory factors that influence adventitious root formation in blueberry and provided a comprehensive understanding of the rooting mechanism underlying the auxin-induced AR formation from blueberry green cuttings.



2019 ◽  
Author(s):  
Haishan An ◽  
Jiaying Zhang ◽  
Fangjie Xu ◽  
Shuang Jiang ◽  
Xueying Zhang

Abstract Background Propagation of cuttings was mostly used in various plant species including blueberry, the special root characteristics of blueberry usually resulted in a difficulty in adventitious root (AR) formation. The AR formation was influenced by various factors, of which auxin was considered to play a center role, however little is known of the related regulative mechanisms. In this study, transcriptome analysis using RNA_seq from the stem of green cuttings of southern highbush blueberry 'Biloxi' was performed to discover candidate genes associated with AR formation.Results Rooting phenotypes, especially rooting rate, was significantly promoted by exogenous auxin IBA application. The adventitious root primordium initiation (rpi) began to be formed at 14 day (d) after cutting, developed into root primordium (rp) at 21d, finally the rp further developed to mature AR at 28d. Higher IAA and lower ABA and zeatin might facilitate the AR formation and development. A time series transcriptome analysis indentified 14970 differentially expressed genes (DEGs) during AR formation, of which there were 7467 up-regulated and 7503 down-regulated genes, respectively. Of these, about 35 candidate DEGs involved in auxin-induced pathway and AR formation were further identified, including 10 auxin respective genes ARFs and SAURs , 13 transcription factors LOB domain-containing protein ( LBD s), 6 auxin transporter AUX22 , LAX3/5 and PIN-like 6s ( PIL6s ) and 6 rooting-associated genes root meristem growth factor 9 ( RGF9 ), lateral root primordium 1 ( LRP1s ), dormancy-associated protein homolog 3 ( DRMH3 ). All these identified DEGs were highly up-regulated in certain AR developed stage, indicating their potential roles in blueberry AR formation.Conclusions The transcriptome profiling indicated candidate genes or major regulative factors that influence adventitious root formation in blueberry, and provided a comprehensive understanding of rooting mechanism of the auxin-induced AR formation from blueberry green cuttings.



Sign in / Sign up

Export Citation Format

Share Document