scholarly journals Response of rhizosphere soil microbial to Deyeuxia angustifolia encroaching in two different vegetation communities in alpine tundra

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Lin Li ◽  
Ming Xing ◽  
Jiangwei Lv ◽  
Xiaolong Wang ◽  
Xia Chen
2003 ◽  
Vol 69 (1) ◽  
pp. 483-489 ◽  
Author(s):  
Steven D. Siciliano ◽  
James J. Germida ◽  
Kathy Banks ◽  
Charles W. Greer

ABSTRACT The purpose of this study was to investigate the mechanism by which phytoremediation systems promote hydrocarbon degradation in soil. The composition and degradation capacity of the bulk soil microbial community during the phytoremediation of soil contaminated with aged hydrocarbons was assessed. In the bulk soil, the level of catabolic genes involved in hydrocarbon degradation (ndoB, alkB, and xylE) as well as the mineralization of hexadecane and phenanthrene was higher in planted treatment cells than in treatment cells with no plants. There was no detectable shift in the 16S ribosomal DNA (rDNA) composition of the bulk soil community between treatments, but there were plant-specific and -selective effects on specific catabolic gene prevalence. Tall Fescue (Festuca arundinacea) increased the prevalence of ndoB, alkB, and xylE as well as naphthalene mineralization in rhizosphere soil compared to that in bulk soil. In contrast, Rose Clover (Trifolium hirtum) decreased catabolic gene prevalence and naphthalene mineralization in rhizosphere soil. The results demonstrated that phytoremediation systems increase the catabolic potential of rhizosphere soil by altering the functional composition of the microbial community. This change in composition was not detectable by 16S rDNA but was linked to specific functional genotypes with relevance to petroleum hydrocarbon degradation.


2021 ◽  
Vol 49 (4) ◽  
pp. 12532
Author(s):  
Ali I. MALLANO ◽  
Xianli ZHAO ◽  
Yanling SUN ◽  
Guangpin JIANG ◽  
Huang CHAO

Continuous cropping systems are the leading cause of decreased soil biological environments in terms of unstable microbial population and diversity index. Nonetheless, their responses to consecutive peanut monocropping cycles have not been thoroughly investigated. In this study, the structure and abundance of microbial communities were characterized using pyrosequencing-based approach in peanut monocropping cycles for three consecutive years. The results showed that continuous peanut cultivation led to a substantial decrease in soil microbial abundance and diversity from initial cropping cycle (T1) to later cropping cycle (T3). Peanut rhizosphere soil had Actinobacteria, Protobacteria, and Gemmatimonadetes as the major bacterial phyla. Ascomycota, Basidiomycota were the major fungal phylum, while Crenarchaeota and Euryarchaeota were the most dominant phyla of archaea. Several bacterial, fungal and archaeal taxa were significantly changed in abundance under continuous peanut cultivation. Bacterial orders, Actinomycetales, Rhodospirillales and Sphingomonadales showed decreasing trends from T1>T2>T3. While, pathogenic fungi Phoma was increased and beneficial fungal taxa Glomeraceae decreased under continuous monocropping. Moreover, Archaeal order Nitrososphaerales observed less abundant in first two cycles (T1&T2), however, it increased in third cycle (T3), whereas, Thermoplasmata exhibit decreased trends throughout consecutive monocropping. Taken together, we have shown the taxonomic profiles of peanut rhizosphere communities that were affected by continuous peanut monocropping. The results obtained from this study pave ways towards a better understanding of the peanut rhizosphere soil microbial communities in response to continuous cropping cycles, which could be used as bioindicator to monitor soil quality, plant health and land management practices.


Sign in / Sign up

Export Citation Format

Share Document