Effect of anti-fungal compound phytosphingosine in wheat root exudates on the rhizosphere soil microbial community of watermelon

2020 ◽  
Vol 456 (1-2) ◽  
pp. 223-240 ◽  
Author(s):  
Chunxia Li ◽  
Qing Tian ◽  
Muhammad Khashi u Rahman ◽  
Fengzhi Wu
2017 ◽  
Vol 434 (1-2) ◽  
pp. 245-262 ◽  
Author(s):  
Wenhao Yang ◽  
Pei Li ◽  
Christopher Rensing ◽  
Wuzhong Ni ◽  
Shihe Xing

2013 ◽  
Vol 295-298 ◽  
pp. 2274-2280 ◽  
Author(s):  
Xiao Deng ◽  
Qin Fen Li ◽  
Xian Wen Hou ◽  
Chun Yuan Wu

Thirty rhizosphere and non-rhizosphere soil samples from different infection grades(0, I, III, V and VII) of three typical banana plots(Jianfeng, Shiyuetian, Chongpo) infected by banana fusarium wilt (Fusarium oxysporum f. sp. cubense) in Hainan province were collected to study the microbial community functional diversity applying Biolog-ECO microplates technology. The results are as follows: (1) Overall carbon source metabolic capacities of soil microbial community weaken with increasing of infection grades of banana fusarium wilt. (2) Richness indices, Simpson indices, Shannon indices and McIntosh indices of soil microbial community gradually decreased with increasing of infection grades of banana fusarium wilt. (3) Principal component analysis show that metabolic characteristics of soil microbial community significantly change between the healthy plants and diseased plants in the same banana plot. The results would provide information for explaining the pathogenesis of banana fusarium wilt and controlling its incidence by applying microbial ecology to regulate soil environmental measures.


Soil Research ◽  
2006 ◽  
Vol 44 (4) ◽  
pp. 367 ◽  
Author(s):  
M. H. Ryan ◽  
J. A. Kirkegaard ◽  
J. F. Angus

The impact of Brassica crops and their tissues on accumulation of mineral N in soil was examined in the field and in laboratory incubation experiments. Mineral N accumulation over the summer fallow increased by an additional 39–49 kg/ha in the top 0.10 m of soil following brassicas compared with wheat at 2 sites. At a third site there was no increase in the top 0.10 m, but this was possibly due to leaching, as a 21–39 kg/ha increase was detected over the 1.50 m profile. The accumulation of mineral N in soil collected after harvest of canola crops and incubated in the laboratory was double that of soil collected after non-Brassica crops. This outcome was not evident in soil collected when crops were flowering, only occurred in the top 0.05 m of soil, and did not persist beyond week 3 of the incubation. In further laboratory incubations using tissues from wheat and a range of brassicas matched for C : N ratio but differing in glucosinolate concentration, Brassica root tissues initially immobilised, and later released, mineral N at a greater rate than wheat root tissues. These results suggest that enhanced accumulation of mineral N following Brassica crops compared with cereal crops is unlikely to be due to biofumigation of the soil microbial community. Shifts in the composition of the soil microbial community and differences in the chemical constituents of root tissues and in above-ground crop residue inputs may instead be responsible.


2022 ◽  
Vol 10 (1) ◽  
pp. 158
Author(s):  
Jinan Cheng ◽  
Hui Jin ◽  
Jinlin Zhang ◽  
Zhongxiang Xu ◽  
Xiaoyan Yang ◽  
...  

Allelochemicals released from the root of Stellera chamaejasme L. into rhizosphere soil are an important factor for its invasion of natural grasslands. The aim of this study is to explore the interactions among allelochemicals, soil physicochemical properties, soil enzyme activities, and the rhizosphere soil microbial communities of S. chamaejasme along a growth-coverage gradient. High-throughput sequencing was used to determine the microbial composition of the rhizosphere soil sample, and high-performance liquid chromatography was used to detect allelopathic substances. The main fungal phyla in the rhizosphere soil with a growth coverage of 0% was Basidiomycetes, and the other sample plots were Ascomycetes. Proteobacteria and Acidobacteria were the dominant bacterial phyla in all sites. RDA analysis showed that neochamaejasmin B, chamaechromone, and dihydrodaphnetin B were positively correlated with Ascomycota and Glomeromycota and negatively correlated with Basidiomycota. Neochamaejasmin B and chamaechromone were positively correlated with Proteobacteria and Actinobacteria and negatively correlated with Acidobacteria and Planctomycetes. Allelochemicals, soil physicochemical properties, and enzyme activity affected the composition and diversity of the rhizosphere soil microbial community to some extent. When the growth coverage of S. chamaejasme reached the primary stage, it had the greatest impact on soil physicochemical properties and enzyme activities.


2021 ◽  
Author(s):  
Liuting Zhou ◽  
Jianjuan Li ◽  
Chen Zhang ◽  
Xinlai Guo ◽  
Wei Chu ◽  
...  

Abstract The aim of this study was to explore the soil microbial variability within different forest ecosystems (evergreen broad-leaf forest (EBF), coniferous forest (CF), subalpine dwarf forest (SDF) and alpine meadow (AM) at different altitudes in mid-subtropics of China. The phospholipid fatty acid (PLFA) method was used to analyze the microbial communities in rhizosphere soil under different forest types. The relationships were also analyzed between the microbial diversity and soil nutrients. A total of 27 PLFA biomarkers were detected and the PLFA concentrations decreased in the sequence of bacteria > fungus > actinomycete > protozoa in all forest types. The microbial communities in the soil under all forest types were distinct. The predominant microflora in all soils were 18:1ω9c, 16:1ω7c, cy19:0, a17:0 and 18:0. The indexes of Simpson, Shannon-Wiener and Brillouin of soil microbial community diversity in these four forest types all showed a trend of EBF > CF > SDF > AM. According to principal component analyses (PCA), the variable variances of principal components 1 and 2, which were related to the PLFA biomarkers of soil microorganisms, were 67.67% and 17.91%, respectively. Furthermore, the total PLFAs of different soil microbial groups showed a correlation with soil nutrients and enzyme activities in all forest types. The soil microbial diversity gradually decreased in the order of EBF > CF > SDF > AM in the Daiyun Mountains. Different vegetation types affect soil microbial community composition and diversity by changing the soil physicochemical properties and enzyme activity.


Sign in / Sign up

Export Citation Format

Share Document