scholarly journals Long-term ground deformation patterns of Bucharest using multi-temporal InSAR and multivariate dynamic analyses: a possible transpressional system?

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Iuliana Armaş ◽  
Diana A. Mendes ◽  
Răzvan-Gabriel Popa ◽  
Mihaela Gheorghe ◽  
Diana Popovici
2020 ◽  
Vol 12 (22) ◽  
pp. 3788
Author(s):  
Yakun Han ◽  
Jingui Zou ◽  
Zhong Lu ◽  
Feifei Qu ◽  
Ya Kang ◽  
...  

Wuhan, the largest city in central China, has experienced rapid urban development leading to land subsidence as well as environmental concerns in recent years. Although a few studies have analyzed the land subsidence of Wuhan based on ALOS-1, Envisat, and Sentinel-1 datasets, the research on long-term land subsidence is still lacking. In this study, we employed multi-temporal InSAR to investigate and reveal the spatiotemporal evolution of land subsidence over Wuhan with ALOS-1, Envisat, and Sentinel-1 images from 2007–2010, 2008–2010, 2015–2019, respectively. The results detected by InSAR were cross-validated by two independent SAR datasets, and leveling observations were applied to the calibration of InSAR-derived measurements. The correlation coefficient between the leveling and InSAR has reached 0.89. The study detected six main land subsidence zones during the monitoring period, with the maximum land subsidence velocity of −46 mm/a during the 2015–2019 analysis. Both the magnitude and the extent of the land subsidence have reduced since 2017. The causes of land subsidence are discussed in terms of urban construction, Yangtze river water level changes, and subsurface water level changes. Our results provide insight for understanding the causes of land subsidence in Wuhan and serve as reference for city management for reducing the land subsidence in Wuhan and mitigating the potential hazards.


Author(s):  
J. Eppler ◽  
M. Kubanski ◽  
J. Sharma ◽  
J. Busler

The combined effect of climate change and accelerated economic development in Northern regions increases the threat of permafrost related surface deformation to buildings and transportation infrastructure. Satellite based InSAR provides a means for monitoring infrastructure that may be both remote and spatially extensive. However, permafrost poses challenges for InSAR monitoring due to the complex temporal deformation patterns caused by both seasonal active layer fluctuations and long-term changes in permafrost thickness. These dynamics suggest a need for increasing the temporal resolution of multi-temporal InSAR methods. To address this issue we have developed a method that combines and jointly processes two or more same side geometry InSAR stacks to provide a high-temporal resolution estimate of surface deformation. The method allows for combining stacks from more than a single SAR sensor and for a combination of frequency bands. <br><br> Data for this work have been collected and analysed for an area near the community of Umiujaq, Quebec in Northern Canada and include scenes from RADARSAT-2, TerraSAR-X and COSMO-SkyMed. Multiple stack based surface deformation estimates are compared for several cases including results from the three sensors individually and for all sensors combined. The test cases show substantially similar surface deformation results which correlate well with surficial geology. The best spatial coverage of coherent targets was achieved when data from all sensors were combined. <br><br> The proposed multiple stack method is demonstrated to improve the estimation of surface deformation in permafrost affected areas and shows potential for deriving InSAR based permafrost classification maps to aid in the monitoring of Northern infrastructure.


2019 ◽  
Vol 11 (19) ◽  
pp. 2246 ◽  
Author(s):  
Murgia ◽  
Bignami ◽  
Brunori ◽  
Tolomei ◽  
Pizzimenti

This work focuses on the study of land subsidence processes by means of multi-temporal and multi-frequency InSAR techniques. Specifically, we retrieve the long-term evolution (2003–2018) of the creeping phenomenon producing ground fissuring in the Ciudad Guzmán (Jalisco state, Mexico) urban area. The city is located on the northern side of the Volcan de Colima area, one of the most active Mexican volcanoes. On September 21 2012, Ciudad Guzmán was struck by ground fissures of about 1.5 km of length, causing the deformation of the roads and the propagation of fissures in adjacent buildings. The field surveys showed that fissures follow the escarpments produced during the central Mexico September 19 1985 Mw 8.1 earthquake. We extended the SAR (Synthetic Aperture Radar) interferometric monitoring starting with the multi-temporal analysis of ENVISAT and COSMO-SkyMed datasets, allowing the monitoring of the observed subsidence phenomena affecting the Mexican city. We processed a new stack of Sentinel-1 TOPSAR acquisition mode images along both descending and ascending paths and spanning the 2016–2018 temporal period. The resulting long-term trend observed by satellites, together with data from volcanic bulletin and in situ surveys, seems to suggest that the subsidence is due to the exploitation of the aquifers and that the spatial arrangement of ground deformation is controlled by the position of buried faults.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Atanu Bhattacharya ◽  
Tobias Bolch ◽  
Kriti Mukherjee ◽  
Owen King ◽  
Brian Menounos ◽  
...  

AbstractKnowledge about the long-term response of High Mountain Asian glaciers to climatic variations is paramount because of their important role in sustaining Asian river flow. Here, a satellite-based time series of glacier mass balance for seven climatically different regions across High Mountain Asia since the 1960s shows that glacier mass loss rates have persistently increased at most sites. Regional glacier mass budgets ranged from −0.40 ± 0.07 m w.e.a−1 in Central and Northern Tien Shan to −0.06 ± 0.07 m w.e.a−1 in Eastern Pamir, with considerable temporal and spatial variability. Highest rates of mass loss occurred in Central Himalaya and Northern Tien Shan after 2015 and even in regions where glaciers were previously in balance with climate, such as Eastern Pamir, mass losses prevailed in recent years. An increase in summer temperature explains the long-term trend in mass loss and now appears to drive mass loss even in regions formerly sensitive to both temperature and precipitation.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 334
Author(s):  
Juraj Lieskovský ◽  
Dana Lieskovská

This study compares different nationwide multi-temporal spatial data sources and analyzes the cropland area, cropland abandonment rates and transformation of cropland to other land cover/land use categories in Slovakia. Four multi-temporal land cover/land use data sources were used: The Historic Land Dynamics Assessment (HILDA), the Carpathian Historical Land Use Dataset (CHLUD), CORINE Land Cover (CLC) data and Landsat images classification. We hypothesized that because of the different spatial, temporal and thematic resolution of the datasets, there would be differences in the resulting cropland abandonment rates. We validated the datasets, compared the differences, interpreted the results and combined the information from the different datasets to form an overall picture of long-term cropland abandonment in Slovakia. The cropland area increased until the Second World War, but then decreased after transition to the communist regime and sharply declined following the 1989 transition to an open market economy. A total of 49% of cropland area has been transformed to grassland, 34% to forest and 15% to urban areas. The Historical Carpathian dataset is the more reliable long-term dataset, and it records 19.65 km2/year average cropland abandonment for 1836–1937, 154.44 km2/year for 1938–1955 and 140.21 km2/year for 1956–2012. In comparison, the Landsat, as a recent data source, records 142.02 km2/year abandonment for 1985–2000 and 89.42 km2/year for 2000–2010. These rates, however, would be higher if the dataset contained urbanisation data and more precise information on afforestation. The CORINE Land Cover reflects changes larger than 5 ha, and therefore the reported cropland abandonment rates are lower.


2021 ◽  
Vol 11 (10) ◽  
pp. 4630
Author(s):  
Alessandro Bonforte ◽  
Flavio Cannavò ◽  
Salvatore Gambino ◽  
Francesco Guglielmino

We propose a multi-temporal-scale analysis of ground deformation data using both high-rate tilt and GNSS measurements and the DInSAR and daily GNSS solutions in order to investigate a sequence of four paroxysmal episodes of the Voragine crater occurring in December 2015 at Mt. Etna (Italy). The analysis aimed at inferring the magma sources feeding a sequence of very violent eruptions, in order to understand the dynamics and to image the shallow feeding system of the volcano that enabled such a rapid magma accumulation and discharge. The high-rate data allowed us to constrain the sources responsible for the fast and violent dynamics of each paroxysm, while the cumulated deformation measured by DInSAR and daily GNSS solutions, over a period of 12 days encompassing the entire eruptive sequence, also showed the deeper part of the source involved in the considered period, where magma was stored. We defined the dynamics and rates of the magma transfer, with a middle-depth storage of gas-rich magma that charges, more or less continuously, a shallower level where magma stops temporarily, accumulating pressure due to the gas exsolution. This machine-gun-like mechanism could represent a general conceptual model for similar events at Etna and at all volcanoes.


2021 ◽  
Vol 675 (1) ◽  
pp. 012029
Author(s):  
Qing Yang ◽  
Zhanqiang Chang ◽  
Yanqiao Wang ◽  
Yanxin Zhang ◽  
Songbo Huang

2018 ◽  
Vol 482 ◽  
pp. 193-200 ◽  
Author(s):  
Jürgen W. Neuberg ◽  
Amy S.D. Collinson ◽  
Patricia A. Mothes ◽  
Mario C. Ruiz ◽  
Santiago Aguaiza

2021 ◽  
Author(s):  
Federico Di Traglia ◽  
Claudio De Luca ◽  
Alessandro Fornaciai ◽  
Mariarosaria Manzo ◽  
Teresa Nolesini ◽  
...  

&lt;p&gt;Steep-slope volcanoes are geomorphological systems receptive to both exogenous and endogenous phenomena. Volcanic activity produces debris and lava accumulation, whereas magmatic/tectonic and gravitational processes can have a destructive effect, triggering mass-wasting and erosion.&lt;/p&gt;&lt;p&gt;Optical and radar sensors have often been used to identify areas impacted by eruptive and post-eruptive phenomena, quantify of topographic changes, and/or map ground deformation related to magmatic-tectonic-gravitational processes.&lt;/p&gt;&lt;p&gt;In this work, the slope processes on high-gradient volcano flanks in response to shift in volcanic activity have been identified by means of remote sensing techniques. The Sciara del Fuoco unstable flank of Stromboli volcano (Italy) was studied, having a very large set (2010-2020) of different remote sensing data available.&lt;/p&gt;&lt;p&gt;Data includes LiDAR and tri-stereo PLEIADES-1 DEMs, high-spatial-resolution (HSR) optical imagery (QUICKBIRD and PLEIADES-1), and space-borne and ground-based Synthetic Aperture Radar (SAR) data. Multi-temporal DEMs and HSR optical imagery permits to map areas affected by major lithological and morphological changes, and the volumes of deposited/eroded material. The results lead to the identification of topographical variations and geomorphological processes that occurred in response to the variation in eruptive intensity. The joint exploitation of space-borne and ground-based Differential and Multi Temporal SAR Interferometry (InSAR and MT-InSAR) measurements revealed deformation phenomena affecting the volcano edifice, and in particular the Sciara del Fuoco flank.&lt;/p&gt;&lt;p&gt;The presented results demonstrate the effectiveness of the joint exploitation of multi-temporal DEMs, HSR optical imagery, and InSAR measurements obtained through satellite and terrestrial SAR systems, highlighting their strong complementarity to map and interpret the slope phenomena in volcanic areas.&lt;/p&gt;&lt;p&gt;This work was financially supported by the &amp;#8220;Presidenza del Consiglio dei Ministri &amp;#8211; Dipartimento della Protezione Civile&amp;#8221; (Presidency of the Council of Ministers &amp;#8211; Department of Civil Protection); this publication, however, does not reflect the position and official policies of the Department&quot;.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document