scholarly journals Decreased NOX2 expression in the brain of patients with bipolar disorder: association with valproic acid prescription and substance abuse

2017 ◽  
Vol 7 (8) ◽  
pp. e1206-e1206 ◽  
Author(s):  
T Seredenina ◽  
S Sorce ◽  
F R Herrmann ◽  
X-J Ma Mulone ◽  
O Plastre ◽  
...  
2009 ◽  
Vol 37 (5) ◽  
pp. 1104-1109 ◽  
Author(s):  
Richard P. Bazinet

Although lithium has been used therapeutically to treat patients with bipolar disorder for over 50 years, its mechanism of action, as well as that of other drugs used to treat bipolar disorder, is not agreed upon. In the present paper, I review studies in unanaesthetized rats using a neuropharmacological approach, combined with kinetic, biochemical and molecular biology techniques, demonstrating that chronic administration of three commonly used mood stabilizers (lithium, valproic acid and carbamazepine), at therapeutically relevant doses, selectively target the brain arachidonic acid cascade. Upon chronic administration, lithium and carbamazepine decrease the binding activity of activator protein-2 and, in turn, the transcription, translation and activity of its arachidonic acid-selective calcium-dependent phospholipase A2 gene product, whereas chronic valproic acid non-competitively inhibits long-chain acyl-CoA synthetase. The net overlapping effects of the three mood stabilizers are decreased turnover of arachidonic acid, but not of docosahexaenoic acid, in rat brain phospholipids, as well as decreased brain cyclo-oxygenase-2 and prostaglandin E2. As an extension of this theory, drugs that are thought to induce switching to mania, especially when administered during bipolar depression (fluoxetine and imipramine), up-regulate enzymes of the arachidonic acid cascade and turnover of arachidonic acid in rat brain phospholipids. Future basic and clinical studies on the arachidonic acid hypothesis of bipolar disorder are warranted.


2020 ◽  
Vol 15 (2) ◽  
pp. 156-159 ◽  
Author(s):  
Deborah L. Sanchez ◽  
Adam J. Fusick ◽  
Steven R. Gunther ◽  
Michael J. Hernandez ◽  
Gregory A. Sullivan ◽  
...  

Background: Lamotrigine is a phenyltriazine medication that has been approved by the United States Food and Drug Administration as monotherapy and as an adjunctive agent for the treatment of seizure disorder. It was later approved by the FDA for the treatment of bipolar disorder. Lamotrigine is generally well tolerated by patients, but some serious symptoms can occur during treatment. These severe side effects include rashes and multi-organ failure. Lamotrigine has also been associated with the development of mental status changes, frequently when used concurrently with other medications that may impact the metabolism of lamotrigine. Objective: To present the case of a 65-year-old man being treated with lamotrigine and valproic acid who developed mental status changes after the addition of sertraline to his medication regimen, and to compare this case to existing cases reported in the literature. Discussion: Our case adds to the existing literature by demonstrating that patients may experience adverse medication effects despite lamotrigine levels that are normally considered to be in the therapeutic range, highlighting the importance of clinical correlation when obtaining medication levels. Conclusion: Clinicians should use caution interpreting lamotrigine levels when working up delirium, as normal levels may not rule out the development of lamotrigine toxicity.


2001 ◽  
Vol 3 (4) ◽  
pp. 181-188 ◽  
Author(s):  
Frederick Cassidy ◽  
Eileen P Ahearn ◽  
Bernard J Carroll

2005 ◽  
Vol 28 (2) ◽  
pp. 415-425 ◽  
Author(s):  
E. Sherwood Brown

2006 ◽  
Vol 40 (1) ◽  
pp. 147-150 ◽  
Author(s):  
Nancy L Sheehan ◽  
Marie-Josée Brouillette ◽  
Marie-Soleil Delisle ◽  
James Allan

2009 ◽  
Vol 37 (5) ◽  
pp. 1080-1084 ◽  
Author(s):  
Charles H. Large ◽  
Elena Di Daniel ◽  
Xingbao Li ◽  
Mark S. George

One strategy to understand bipolar disorder is to study the mechanism of action of mood-stabilizing drugs, such as valproic acid and lithium. This approach has implicated a number of intracellular signalling elements, such as GSK3β (glycogen synthase kinase 3β), ERK (extracellular-signal-regulated kinase)/MAPK (mitogen-activated protein kinase) or protein kinase C. However, lamotrigine does not seem to modulate any of these targets, which is intriguing given that its profile in the clinic differs from that of valproic acid or lithium, with greater efficacy to prevent episodes of depression than mania. The primary target of lamotrigine is the voltage-gated sodium channel, but it is unclear why inhibition of these channels might confer antidepressant efficacy. In healthy volunteers, we found that lamotrigine had a facilitatory effect on the BOLD (blood-oxygen-level-dependent) response to TMS (transcranial magnetic stimulation) of the prefrontal cortex. This effect was in contrast with an inhibitory effect of lamotrigine when TMS was applied over the motor cortex. In a follow-up study, a similar prefrontal specific facilitatory effect was observed in a larger cohort of healthy subjects, whereas valproic acid inhibited motor and prefrontal cortical TMS-induced BOLD response. In vitro, we found that lamotrigine (3–10 μM) enhanced the power of gamma frequency network oscillations induced by kainic acid in the rat hippocampus, an effect that was not observed with valproic acid (100 μM). These data suggest that lamotrigine has a positive effect on corticolimbic network function that may differentiate it from other mood stabilizers. The results are also consistent with the notion of corticolimbic network dysfunction in bipolar disorder.


2006 ◽  
Vol 18 (5) ◽  
pp. 193-209 ◽  
Author(s):  
Richard J. Porter ◽  
Peter Gallagher

Background:New evidence is emerging regarding abnormalities of hypothalamic-pituitary-adrenal (HPA) axis function in subtypes of affective disorders. Adverse effects of HPA axis dysregulation may include dysfunction of monoaminergic transmitter systems, cognitive impairment and peripheral effects. Newer treatments specifically targeting the HPA axis are being developed.Objective:To review these developments focusing particularly on the glucocorticoid receptor (GR) antagonist mifepristone.Method:A selective review of the literature.Results:The function of GRs is increasingly being defined. The role of corticotrophin-releasing hormone (CRH) and dehydroepiandrosterone (DHEA) in the brain is also increasingly understood. HPA axis function is particularly likely to be abnormal in psychotic depression and bipolar disorder, and it is in these conditions that trials of the GR antagonist mifepristone are being focused. CRH antagonists and DHEA are also being investigated as potential treatments.Conclusion:Initial studies of mifepristone and other HPA-axis-targeting agents in psychotic depression and bipolar disorder are encouraging and confirmatory studies are awaited.


2012 ◽  
Vol 34 (3) ◽  
pp. 121-128 ◽  
Author(s):  
Rodrigo Barbachan Mansur ◽  
Elisa Brietzke

Metabolic abnormalities are frequent in patients with schizophrenia and bipolar disorder (BD), leading to a high prevalence of diabetes and metabolic syndrome in this population. Moreover, mortality rates among patients are higher than in the general population, especially due to cardiovascular diseases. Several neurobiological systems involved in energy metabolism have been shown to be altered in both illnesses; however, the cause of metabolic abnormalities and how they relate to schizophrenia and BD pathophysiology are still largely unknown. The "selfish brain" theory is a recent paradigm postulating that, in order to maintain its own energy supply stable, the brain modulates energy metabolism in the periphery by regulation of both allocation and intake of nutrients. We hypothesize that the metabolic alterations observed in these disorders are a result of an inefficient regulation of the brain energy supply and its compensatory mechanisms. The selfish brain theory can also expand our understanding of stress adaptation and neuroprogression in schizophrenia and BD, and, overall, can have important clinical implications for both illnesses.


Sign in / Sign up

Export Citation Format

Share Document