Gas sensing properties of the mixed molybdenum tungsten oxide, W0.9Mo0.1O3Electronic supplementary information (ESI) available: A. Scanning electron micrograph of the surface of a mixed molybdenum tungsten oxide gas sensor revealing an open structure and a particle size range from 0.1 to 5 microns. B. Elemental analysis (by X-ray wavelength) of the mixed molybdenum tungsten oxide prepared and used in this study. C. Responses of a mixed molybdenum tungsten oxide sensor at two temperatures to the introduction of 1% methane into an atmosphere of dry air. See http://www.rsc.org/suppdata/jm/b1/b111118n/

2002 ◽  
Vol 12 (6) ◽  
pp. 1779-1781 ◽  
Author(s):  
Odile Merdrignac-Conanec ◽  
Patrick T. Moseley
2010 ◽  
Vol 659 ◽  
pp. 215-219 ◽  
Author(s):  
Áron Kázmér Nagy ◽  
Judit Pfeifer ◽  
István Endre Lukács ◽  
Attila Lajos Tóth ◽  
Csaba Balázsi

The excellent gas sensing properties of the tungsten oxides have been manifested first of all in nanostructure and 1D, and 2D open structured forms. For optimal performance the sensing layer substrates should be of large specific surface. In this paper we report on electrospinning – a candidate for fabrication of large specific surface tungsten oxide nanofibers. Fibrous tissues doped with tungstic acid hydrate (H2WO4.H2O) and tungsten oxide one third hydrate (WO3.1/3H2O) has been created and characterized by X-ray diffraction, scanning electron microscope and energy dispersive spectroscopy in order to learn about the changes the materials suffer during the process.


Author(s):  
S. Kumar ◽  
P. Gowthaman ◽  
J. Deenathayalan

Electro spinning technology combined with chemical precipitation method and high-temperature calcination was used to prepare SnO2-NiO composite semiconductor nanofibers with different Sn content. Scanning electron microscope (SEM), X-ray diffractometer (XRD) and energy dispersive X-ray spectrometer (EDS) were used to characterize the morphology, structure and content of various elements of the sample. Using ethanol as the target gas, the gas sensing properties of SnO2-NiO nanofibers and the influence of Sn content on the gas sensing properties of composite nanofibers were explored. The research results show that SnO2-NiO composite nanofibers have a three-dimensional network structure, and the SnO2 composite can significantly enhance the gas sensitivity of NiO nanofibers. With increase of SnO2 content, the response sensitivity of composite fibers to ethanol gas increases, and the response sensitivity of composite nanofibers with the highest response to ethanol gas with a volume fraction of 100×10-6 at the optimal working temperature of 160℃ are13.4;It is 8.38 times the maximum response sensitivity of NiO nanofibers. Compared with the common ethanol gas sensor MQ-3 on the market, SnO2-NiO composite nanofibers have a lower optimal working temperature and higher response sensitivity, which has certain practical application value


2021 ◽  
Vol 16 (3) ◽  
pp. 363-367
Author(s):  
Gaoqi Zhang ◽  
Fan Zhang ◽  
Kaifang Wang ◽  
Tao Tian ◽  
Shanyu Liu ◽  
...  

Accurate and real-time detection of formaldehyde (HCHO) in indoor air is urgently needed for human health. In this work, a ceramic material (WO3·H2O) with unique structure was successfully prepared using an efficient hydrothermal method. The crystallinity, morphology and microstructure of the as-prepared sensing material were analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) as well as transmission electron microscope (TEM). The characterization results suggest that the as-prepared sample is composed of square-like nanoplates with uneven surface. Formaldehyde vapor is utilized as the target gas to investigate gas sensing properties of the synthesized novel nanoplates. The testing results indicate that the as-fabricated gas sensor exhibit high gas response and excellent repeatability to HCHO gas. The response value (Ra/Rg) is 24.5 towards 70 ppm HCHO gas at 350 °C. Besides, the gas sensing mechanism was described.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Xiangfeng Chu ◽  
Junsong Liu ◽  
Shiming Liang ◽  
Linshan Bai ◽  
Yongping Dong ◽  
...  

In this paper, g-C3N4-WO3 composite materials were prepared by hydrothermal processing. The composites were characterized by means of X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and N2 adsorption-desorption, respectively. The gas sensing properties of the composites were investigated. The results indicated that the addition of appropriate amount of g-C3N4 to WO3 could improve the response and selectivity to acetone. The sensor based on 2 wt% g-C3N4-WO3 composite showed the best gas sensing performances. When operating at optimum temperature of 310°C, the responses to 1000 ppm and 0.5 ppm acetone were 58.2 and 1.6, respectively, and the ratio of the S1000 ppm acetone to S1000 ppm ethanol reached 3.7.


ChemInform ◽  
2006 ◽  
Vol 37 (13) ◽  
Author(s):  
Julien Polleux ◽  
Alexander Gurlo ◽  
Nicolae Barsan ◽  
Udo Weimar ◽  
Markus Antonietti ◽  
...  

1997 ◽  
Vol 30 (23) ◽  
pp. 3211-3215 ◽  
Author(s):  
M Di Giulio ◽  
D Manno ◽  
G Micocci ◽  
A Serra ◽  
A Tepore

2012 ◽  
Vol 620 ◽  
pp. 350-355 ◽  
Author(s):  
Wan Normiza Wan Mustapha ◽  
S.A. Rezan Sheikh Abdul Hamid ◽  
Sabar Derita Hutagalung ◽  
Nguyen Van Hieu ◽  
Khairudin Mohamed ◽  
...  

Tin oxide nanostructures (NS) were grown on silicon substrates by thermal evaporation method with three different parameters. These parameters were temperatures (650 °C, 750 °C and 850 °C), nickel catalyst concentrations (0, 5 and 10 milimoles) and tin powder source to substrate distances (2 cm, 4 cm and 6 cm). The parameters were found to affect the size and morphology of the synthesized nanostructures. Formation of nanospheres (NSs), nanoneedles (NNs) and nanowires (NWs) of tin oxide were observed by Scanning Electron Microscope (SEM) at different synthesis conditions. Synthesis temperature was found to have most pronounced effect on the size and morphology of the nanostructures. Catalyst concentration has affected the porosity and growth of the nanostructures. The distance between source and substrate affected the nanostructures predominately on distribution and particle size. Energy dispersion X-ray (EDX) analysis confirms the presence of tin and oxygen in all nanostructures at all synthesis conditions. X-ray diffraction (XRD) proves the formation of tin oxide phase in all samples. Significant formation of tin oxide nanowires was observed at 850 °C. Gas sensing properties of SnO2 nanowires (NW) toward ethanol (C2H5OH) gas at 450°C with different volume concentration was measured. It was found SnO2 NW had good sensing properties for C2H5OH at 100 ppm compared to measurements made at 25-50 ppm.


Sign in / Sign up

Export Citation Format

Share Document