The effect of grafting method on the colloidal stability and in vitro cytotoxicity of carboxymethyl dextran coated magnetic nanoparticles

2010 ◽  
Vol 20 (39) ◽  
pp. 8539 ◽  
Author(s):  
Mar Creixell ◽  
Adriana P. Herrera ◽  
Magda Latorre-Esteves ◽  
Vanessa Ayala ◽  
Madeline Torres-Lugo ◽  
...  
Nanomedicine ◽  
2020 ◽  
Vol 15 (25) ◽  
pp. 2433-2445
Author(s):  
Joel Kuhn ◽  
Giorgos Papanastasiou ◽  
Cheuk-Wai Tai ◽  
Carmel M Moran ◽  
Maurits A Jansen ◽  
...  

Aim: To examine the multimodal contrasting ability of gold-dotted magnetic nanoparticles (Au*MNPs) for magnetic resonance (MR), computed tomography (CT) and intravascular ultrasound (IVUS) imaging. Materials & methods: Au*MNPs were prepared by adapting an impregnation method, without using surface capping reagents and characterized (transmission electron microscopy, x-ray diffraction and Fourier-transform infrared spectroscopy) with their in vitro cytotoxicity assessed, followed by imaging assessments. Results: The contrast-enhancing ability of Au*MNPs was shown to be concentration-dependent across MR, CT and IVUS imaging. The Au content of the Au*MNP led to evident increases of the IVUS signal. Conclusion: We demonstrated that Au*MNPs showed concentration-dependent contrast-enhancing ability in MRI and CT imaging, and for the first-time in IVUS imaging due to the Au content. These Au*MNPs are promising toward solidifying tri-modal imaging-based theragnostics.


RSC Advances ◽  
2016 ◽  
Vol 6 (77) ◽  
pp. 73605-73616 ◽  
Author(s):  
Nahid Shahabadi ◽  
Monireh Falsafi ◽  
Foroozan Feizi ◽  
Reza Khodarahmi

The aim of this study was to design and prepare γ-Fe2O3@SiO2-zidovudine magnetic nanoparticles (MNPs) for magnetic guided drug targeting and biological applications.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 231 ◽  
Author(s):  
Raquel de M. Barbosa ◽  
Ligia Ribeiro ◽  
Bruna Casadei ◽  
Camila da Silva ◽  
Viviane Queiróz ◽  
...  

Dibucaine (DBC) is among the more potent long-acting local anesthetics (LA), and it is also one of the most toxic. Over the last decades, solid lipid nanoparticles (SLN) have been developed as promising carriers for drug delivery. In this study, SLN formulations were prepared with the aim of prolonging DBC release and reducing its toxicity. To this end, SLN composed of two different lipid matrices and prepared by two different hot-emulsion techniques (high-pressure procedure and sonication) were compared. The colloidal stability of the SLN formulations was tracked in terms of particle size (nm), polydispersity index (PDI), and zeta potential (mV) for 240 days at 4 °C; the DBC encapsulation efficiency was determined by the ultrafiltration/centrifugation method. The formulations were characterized by differential scanning calorimetry (DSC), electron paramagnetic resonance (EPR), and release kinetic experiments. Finally, the in vitro cytotoxicity against 3T3 fibroblast and HaCaT cells was determined, and the in vivo analgesic action was assessed using the tail flick test in rats. Both of the homogenization procedures were found suitable to produce particles in the 200 nm range, with good shelf stability (240 days) and high DBC encapsulation efficiency (~72–89%). DSC results disclosed structural information on the nanoparticles, such as the lower crystallinity of the lipid core vs. the bulk lipid. EPR measurements provided evidence of DBC partitioning in both SLNs. In vitro (cytotoxicity) and in vivo (tail flick) experiments revealed that the encapsulation of DBC into nanoparticles reduces its intrinsic cytotoxicity and prolongs the anesthetic effect, respectively. These results show that the SLNs produced are safe and have great potential to extend the applications of dibucaine by enhancing its bioavailability.


2018 ◽  
Vol 4 (4) ◽  
pp. 55 ◽  
Author(s):  
Raquel Rodrigues ◽  
Giovanni Baldi ◽  
Saer Doumett ◽  
Juan Gallo ◽  
Manuel Bañobre-López ◽  
...  

A simple tailor-made protocol to synthesize graphene-based magnetic nanoparticles (GbMNPs) for nanomedicine is herein reported. Different GbMNPs with very distinctive physicochemical and toxicological properties were synthesized by adjusting the number of carbon precursors in the coating of superparamagnetic iron oxide nanoparticles. In vitro tests show the ability to use these GbMNPs as intelligent and on-demand drug nanocarrier systems for drug delivery, exhibiting the following features: good colloidal stability, good loading capacity of the chemotherapeutic drug doxorubicin, high pH-controlled release of the encapsulated drug (targeting tumour acidic pH conditions), superparamagnetic behaviour and biocompatibility. Due to their combined properties (i.e., physicochemical, magnetic, and biocompatibility), GbMNPs show high potentiality to be combined with other biomedical techniques, such as magnetic hyperthermia, which can represent an enhancement in the treatment of cancer.


NANO ◽  
2010 ◽  
Vol 05 (06) ◽  
pp. 333-339 ◽  
Author(s):  
HUI WANG ◽  
YIMING LI ◽  
ZHAOFENG LUO ◽  
SHUAI ZHOU ◽  
JIN SHENG ◽  
...  

PEG-encapsulated colloidal nanocrystal clusters (CNCs) have been synthesized via a one-step solvothermal process at a temperature of 230°C. The composition, phase, and morphology of these CNCs have been characterized by X-ray diffraction and transmission electron microscopy. Studies show that each particle is a cluster structure consisting of small primary iron oxide nanocrystals. Magnetic measurements reveal the superparamagnetic nature of these CNCs at room temperature. The CNCs with different sizes (80 nm or 95 nm) can be obtained by changing the time of reaction. The dispersibility and colloidal stability of these CNCs with PEG as the major surface group have also been discussed. In vitro cytotoxicity of these CNCs with different thickness PEG layer on HeLa cell has also been assayed. Cytotoxicity results reveal that the CNCs concentration and the incubation time can influence the cell viability, and the size of CNCs almost does not affect the cell viability.


Nanomedicine ◽  
2020 ◽  
Vol 15 (9) ◽  
pp. 891-911
Author(s):  
Ragwa M Farid ◽  
Passent M E Gaafar ◽  
Heba A Hazzah ◽  
Maged W Helmy ◽  
Ossama Y Abdallah

Aim: L-carnosine-coated magnetic nanoparticles (CCMNPs) were developed to enhance chemotherapeutic activity of carnosine-dipeptide. Materials & methods: Surface grafting of MNPs with carnosine was contended by differential scanning calorimetry, infrared spectroscopy and x-ray diffraction. Physicochemical characterization and in vitro cytotoxicity on MCF-7 cell line was carried out. In vivo chemotherapeutic activity and toxicity was assessed by an Ehrlich Ascites tumor model. Results: CCMNPs possessed monodispersed size (120 nm), ζ (-27.3 mV), magnetization (51.52 emu/g) and entrapment efficiency (88.3%) with sustained release rate. CCMNPs showed 2.3-folds lower IC50 values compared with carnosine solution after 48 h. Targeted CCMNPs were specifically accumulated in tumor showing significant reduction in tumor size with no systemic toxicity. Significant reduction in VEGF and cyclin D1 levels were observed. Conclusion: The developed system endowed with responsiveness to an external stimulus can represent a promising magnetically targeted delivery system for carnosine site specific delivery.


Sign in / Sign up

Export Citation Format

Share Document