Direct annealing of electrospun synthesized high-performance porous SnO2 hollow nanofibers for gas sensors

RSC Advances ◽  
2013 ◽  
Vol 3 (25) ◽  
pp. 9723 ◽  
Author(s):  
Lili Wang ◽  
Xiaoju Luo ◽  
Xuejun Zheng ◽  
Rui Wang ◽  
Tong Zhang
Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 783 ◽  
Author(s):  
Andrea Gaiardo ◽  
David Novel ◽  
Elia Scattolo ◽  
Michele Crivellari ◽  
Antonino Picciotto ◽  
...  

The substrate plays a key role in chemoresistive gas sensors. It acts as mechanical support for the sensing material, hosts the heating element and, also, aids the sensing material in signal transduction. In recent years, a significant improvement in the substrate production process has been achieved, thanks to the advances in micro- and nanofabrication for micro-electro-mechanical system (MEMS) technologies. In addition, the use of innovative materials and smaller low-power consumption silicon microheaters led to the development of high-performance gas sensors. Various heater layouts were investigated to optimize the temperature distribution on the membrane, and a suspended membrane configuration was exploited to avoid heat loss by conduction through the silicon bulk. However, there is a lack of comprehensive studies focused on predictive models for the optimization of the thermal and mechanical properties of a microheater. In this work, three microheater layouts in three membrane sizes were developed using the microfabrication process. The performance of these devices was evaluated to predict their thermal and mechanical behaviors by using both experimental and theoretical approaches. Finally, a statistical method was employed to cross-correlate the thermal predictive model and the mechanical failure analysis, aiming at microheater design optimization for gas-sensing applications.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3947
Author(s):  
Wei Wang ◽  
Qinyi Zhang ◽  
Ruonan Lv ◽  
Dong Wu ◽  
Shunping Zhang

High performance formaldehyde gas sensors are widely needed for indoor air quality monitoring. A modified layer of zeolite on the surface of metal oxide semiconductors results in selectivity improvement to formaldehyde as gas sensors. However, there is insufficient knowledge on how the thickness of the zeolite layer affects the gas sensing properties. In this paper, ZSM-5 zeolite films were coated on the surface of the SnO2 gas sensors by the screen printing method. The thickness of ZSM-5 zeolite films was controlled by adjusting the numbers of screen printing layers. The influence of ZSM-5 film thickness on the performance of ZSM-5/SnO2 gas sensors was studied. The results showed that the ZSM-5/SnO2 gas sensors with a thickness of 19.5 μm greatly improved the selectivity to formaldehyde, and reduced the response to ethanol, acetone and benzene at 350 °C. The mechanism of the selectivity improvement to formaldehyde of the sensors was discussed.


2021 ◽  
Vol 2 (4) ◽  
pp. 1-20
Author(s):  
Ahmed Boubrima ◽  
Edward W. Knightly

In this article, we first investigate the quality of aerial air pollution measurements and characterize the main error sources of drone-mounted gas sensors. To that end, we build ASTRO+, an aerial-ground pollution monitoring platform, and use it to collect a comprehensive dataset of both aerial and reference air pollution measurements. We show that the dynamic airflow caused by drones affects temperature and humidity levels of the ambient air, which then affect the measurement quality of gas sensors. Then, in the second part of this article, we leverage the effects of weather conditions on pollution measurements’ quality in order to design an unmanned aerial vehicle mission planning algorithm that adapts the trajectory of the drones while taking into account the quality of aerial measurements. We evaluate our mission planning approach based on a Volatile Organic Compound pollution dataset and show a high-performance improvement that is maintained even when pollution dynamics are high.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 372
Author(s):  
Liyang Lin ◽  
Susu Chen ◽  
Tao Deng ◽  
Wen Zeng

The metal oxides/graphene nanocomposites have great application prospects in the fields of electrochemical energy storage and gas sensing detection. However, rational synthesis of such materials with good conductivity and electrochemical activity is the topical challenge for high-performance devices. Here, SnO2/graphene nanocomposite is taken as a typical example and develops a universal synthesis method that overcome these challenges and prepares the oxygen-deficient SnO2 hollow nanospheres/graphene (r-SnO2/GN) nanocomposite with excellent performance for supercapacitors and gas sensors. The electrode r-SnO2/GN exhibits specific capacitance of 947.4 F g−1 at a current density of 2 mA cm−2 and of 640.0 F g−1 even at 20 mA cm−2, showing remarkable rate capability. For gas-sensing application, the sensor r-SnO2/GN showed good sensitivity (~13.8 under 500 ppm) and short response/recovering time toward methane gas. These performance features make r-SnO2/GN nanocomposite a promising candidate for high-performance energy storage devices and gas sensors.


Author(s):  
Xu Zhou ◽  
Zi Wang ◽  
Ruxin Song ◽  
Yadan Zhang ◽  
Lunan Zhu ◽  
...  

A high performance organic ambipolar transistor-based gas sensor was constructed. It demonstrates dual response features and good selectivity.


Nanoscale ◽  
2021 ◽  
Author(s):  
Soon-Hwan Kwon ◽  
Tae-Hyeon Kim ◽  
Sang-Min Kim ◽  
Semi Oh ◽  
Kyoung-Kook Kim

Nanostructured semiconducting metal oxides such as SnO2, ZnO, TiO2, and CuO have been widely used to fabricate high performance gas sensors. To improve the sensitivity and stability of gas sensors,...


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2123 ◽  
Author(s):  
Wenli Li ◽  
Yong Zhang ◽  
Xia Long ◽  
Juexian Cao ◽  
Xin Xin ◽  
...  

The unique properties of MoS2 nanosheets make them a promising candidate for high-performance room temperature gas detection. Herein, few-layer MoS2 nanosheets (FLMN) prepared via mechanical exfoliation are coated on a substrate with interdigital electrodes for room-temperature NO2 detection. Interestingly, compared with other NO2 gas sensors based on MoS2, FLMN gas sensors exhibit high responsivity for room-temperature NO2 detection, and NO2 is easily desorbed from the sensor surface with an ultrafast recovery behavior, with recovery times around 2 s. The high responsivity is related to the fact that the adsorbed NO2 can affect the electron states within the entire material, which is attributed to the very small thickness of the MoS2 nanosheets. First-principles calculations were carried out based on the density functional theory (DFT) to verify that the ultrafast recovery behavior arises from the weak van der Waals binding between NO2 and the MoS2 surface. Our work suggests that FLMN prepared via mechanical exfoliation have a great potential for fabricating high-performance NO2 gas sensors.


Sensors ◽  
2015 ◽  
Vol 15 (10) ◽  
pp. 27035-27046 ◽  
Author(s):  
Siyuan Chen ◽  
Ali Aldalbahi ◽  
Peter Feng

CrystEngComm ◽  
2012 ◽  
Vol 14 (14) ◽  
pp. 4582 ◽  
Author(s):  
Bin Liu ◽  
Jing Xu ◽  
Sihan Ran ◽  
Zhuoran Wang ◽  
Di Chen ◽  
...  

Sensors ◽  
2017 ◽  
Vol 17 (9) ◽  
pp. 2070 ◽  
Author(s):  
Bian Wu ◽  
Xingfei Zhang ◽  
Beiju Huang ◽  
Yutong Zhao ◽  
Chuantong Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document