A tripodal peptide ligand for asymmetric Rh(ii) catalysis highlights unique features of on-bead catalyst development

2014 ◽  
Vol 5 (4) ◽  
pp. 1401-1407 ◽  
Author(s):  
Ramya Sambasivan ◽  
Wenwei Zheng ◽  
Scott J. Burya ◽  
Brian V. Popp ◽  
Claudia Turro ◽  
...  

A tridentate eq-eq-ax peptide ligand for rhodium(ii) complexes, discovered by high-throughput on-bead screening, is an efficient and selective catalyst for asymmetric cyclopropanation reactions.

1999 ◽  
Vol 4 (4) ◽  
pp. 193-204 ◽  
Author(s):  
Sheri Miraglia ◽  
Elana E. Swartzman ◽  
Julia Mellentin-Michelotti ◽  
Lolita Evangelista ◽  
Christopher Smith ◽  
...  

High throughput drug screening has become a critical component of the drug discovery process. The screening of libraries containing hundreds of thousands of compounds has resulted in a requirement for assays and instrumentation that are amenable to nonradioactive formats and that can be miniaturized. Homogeneous assays that minimize upstream automation of the individual assays are also preferable. Fluorometric microvolume assay technology (FMAT) is a fluorescence-based platform for the development of nonradioactive cell- and bead-based assays for HTS. This technology is plate format-independent, and while it was designed specifically for homogeneous ligand binding and immunological assays, it is amenable to any assay utilizing a fluorescent cell or bead. The instrument fits on a standard laboratory bench and consists of a laser scanner that generates a 1 mm2 digitized image of a 100-μm deep section of the bottom of a microwell plate. The instrument is directly compatible with a Zymark Twister™ (Zymark Corp., Hopkinton, MA) for robotic loading of the scanner and unattended operation in HTS mode. Fluorescent cells or beads at the bottom of the well are detected as localized areas of concentrated fluorescence using data processing. Unbound flurophore comprising the background signal is ignored, allowing for the development of a wide variety of homogeneous assays. The use of FMAT for peptide ligand binding assays, immunofluorescence, apoptosis and cytotoxicity, and bead-based immunocapture assays is described here, along with a general overview of the instrument and software.


2019 ◽  
Vol 4 (37) ◽  
pp. eaav0860 ◽  
Author(s):  
Andreas Moritz ◽  
Raghavendra Anjanappa ◽  
Claudia Wagner ◽  
Sebastian Bunk ◽  
Martin Hofmann ◽  
...  

Major histocompatibility complex (MHC) class I molecules present short peptide ligands on the cell surface for interrogation by cytotoxic CD8+ T cells. MHC class I complexes presenting tumor-associated peptides such as neoantigens represent key targets of cancer immunotherapy approaches currently in development, making them important for efficacy and safety screenings. Without peptide ligand, MHC class I complexes are unstable and decay quickly, making the production of soluble monomers for analytical purposes labor intensive. We have developed a disulfide-stabilized HLA-A*02:01 molecule that is stable without peptide but can form peptide-MHC complexes (pMHCs) with ligands of choice in a one-step loading procedure. We illustrate the similarity between the engineered mutant and the wild-type molecule with respect to affinity of wild-type or affinity-matured T cell receptors (TCRs) and present a crystal structure corroborating the binding kinetics measurements. In addition, we demonstrate a high-throughput binding kinetics measurement platform to analyze the binding characteristics of bispecific TCR (bsTCR) molecules against diverse pMHC libraries produced with the disulfide-stabilized HLA-A*02:01 molecule. We show that bsTCR affinities for pMHCs are indicative of in vitro function and generate a bsTCR binding motif to identify potential off-target interactions in the human proteome. These findings showcase the potential of the platform and the engineered HLA-A*02:01 molecule in the emerging field of pMHC-targeting biologics.


2003 ◽  
Vol 46 (5) ◽  
pp. 328-334 ◽  
Author(s):  
Kohji OMATA ◽  
Yuhsuke WATANABE ◽  
Tetsuo UMEGAKI ◽  
Masahiko HASHIMOTO ◽  
Muneyoshi YAMADA

2007 ◽  
Vol 177 (4S) ◽  
pp. 52-53
Author(s):  
Stefano Ongarello ◽  
Eberhard Steiner ◽  
Regina Achleitner ◽  
Isabel Feuerstein ◽  
Birgit Stenzel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document