Large-scale virtual high-throughput screening for the identification of new battery electrolyte solvents: evaluation of electronic structure theory methods

2014 ◽  
Vol 16 (17) ◽  
pp. 7919-7926 ◽  
Author(s):  
Martin Korth

The performance of semi-empirical quantum mechanical (SQM), density functional theory (DFT) and wave function theory (WFT) methods is evaluated for the purpose of screening a large number of molecular structures with respect to their electrochemical stability to identify new battery electrolyte solvents.

2017 ◽  
Vol 31 (24) ◽  
pp. 1740003 ◽  
Author(s):  
Xu Zhang ◽  
Hongping Xiang ◽  
Mingliang Zhang ◽  
Gang Lu

Plasmonic resonance of metallic nanoparticles results from coherent motion of its conduction electrons, driven by incident light. For the nanoparticles less than 10 nm in diameter, localized surface plasmonic resonances become sensitive to the quantum nature of the conduction electrons. Unfortunately, quantum mechanical simulations based on time-dependent Kohn–Sham density functional theory are computationally too expensive to tackle metal particles larger than 2 nm. Herein, we introduce the recently developed time-dependent orbital-free density functional theory (TD-OFDFT) approach which enables large-scale quantum mechanical simulations of plasmonic responses of metallic nanostructures. Using TD-OFDFT, we have performed quantum mechanical simulations to understand size-dependent plasmonic response of Na nanoparticles and plasmonic responses in Na nanoparticle dimers and trimers. An outlook of future development of the TD-OFDFT method is also presented.


2015 ◽  
Vol 17 (5) ◽  
pp. 3394-3401 ◽  
Author(s):  
Tamara Husch ◽  
Nusret Duygu Yilmazer ◽  
Andrea Balducci ◽  
Martin Korth

A volunteer computing approach is presented for the purpose of screening a large number of molecular structures with respect to their suitability as new battery electrolyte solvents.


Acta Numerica ◽  
2019 ◽  
Vol 28 ◽  
pp. 405-539 ◽  
Author(s):  
Lin Lin ◽  
Jianfeng Lu ◽  
Lexing Ying

Kohn–Sham density functional theory (DFT) is the most widely used electronic structure theory. Despite significant progress in the past few decades, the numerical solution of Kohn–Sham DFT problems remains challenging, especially for large-scale systems. In this paper we review the basics as well as state-of-the-art numerical methods, and focus on the unique numerical challenges of DFT.


2002 ◽  
Vol 726 ◽  
Author(s):  
Paramjit Grewal ◽  
Paul A Wright ◽  
Mark Edgar ◽  
Julian D Gale ◽  
Paul A Cox

AbstractSeveral aluminophosphonate materials have been investigated using both semi-empirical quantum mechanical and Density Functional Theory (DFT) methodologies. The optimised structures obtained are in excellent agreement with experimental results. Important information on the electronic distribution in these structures is obtained, allowing charge distributions to be determined and H2O-framework interactions to be probed. The barriers to rotation for the organic groups in three structures have been investigated. Results for –(CH3) groups in AlMePO-α and AlMePO-β, yield barrier heights that are consistent with rapid rotation at ambient temperature, whereas the barrier height obtained for –(C6H5) in AlBzPO-I suggests that the framework will significantly hinder rotation. The use of modelling to help elucidate the structure of a novel compound, AlMePO-2, and to probe the structure and stability of a hypothetical aluminium ethyl phosphonate, AlEtPO, are also illustrated.


2019 ◽  
Author(s):  
Kamal Batra ◽  
Stefan Zahn ◽  
Thomas Heine

<p>We thoroughly benchmark time-dependent density- functional theory for the predictive calculation of UV/Vis spectra of porphyrin derivatives. With the aim to provide an approach that is computationally feasible for large-scale applications such as biological systems or molecular framework materials, albeit performing with high accuracy for the Q-bands, we compare the results given by various computational protocols, including basis sets, density-functionals (including gradient corrected local functionals, hybrids, double hybrids and range-separated functionals), and various variants of time-dependent density-functional theory, including the simplified Tamm-Dancoff approximation. An excellent choice for these calculations is the range-separated functional CAM-B3LYP in combination with the simplified Tamm-Dancoff approximation and a basis set of double-ζ quality def2-SVP (mean absolute error [MAE] of ~0.05 eV). This is not surpassed by more expensive approaches, not even by double hybrid functionals, and solely systematic excitation energy scaling slightly improves the results (MAE ~0.04 eV). </p>


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chih-Chuen Lin ◽  
Phani Motamarri ◽  
Vikram Gavini

AbstractWe present a tensor-structured algorithm for efficient large-scale density functional theory (DFT) calculations by constructing a Tucker tensor basis that is adapted to the Kohn–Sham Hamiltonian and localized in real-space. The proposed approach uses an additive separable approximation to the Kohn–Sham Hamiltonian and an L1 localization technique to generate the 1-D localized functions that constitute the Tucker tensor basis. Numerical results show that the resulting Tucker tensor basis exhibits exponential convergence in the ground-state energy with increasing Tucker rank. Further, the proposed tensor-structured algorithm demonstrated sub-quadratic scaling with system-size for both systems with and without a gap, and involving many thousands of atoms. This reduced-order scaling has also resulted in the proposed approach outperforming plane-wave DFT implementation for systems beyond 2000 electrons.


2021 ◽  
Vol 22 (6) ◽  
pp. 3244
Author(s):  
Charuvaka Muvva ◽  
Natarajan Arul Murugan ◽  
Venkatesan Subramanian

A wide variety of neurodegenerative diseases are characterized by the accumulation of protein aggregates in intraneuronal or extraneuronal brain regions. In Alzheimer’s disease (AD), the extracellular aggregates originate from amyloid-β proteins, while the intracellular aggregates are formed from microtubule-binding tau proteins. The amyloid forming peptide sequences in the amyloid-β peptides and tau proteins are responsible for aggregate formation. Experimental studies have until the date reported many of such amyloid forming peptide sequences in different proteins, however, there is still limited molecular level understanding about their tendency to form aggregates. In this study, we employed umbrella sampling simulations and subsequent electronic structure theory calculations in order to estimate the energy profiles for interconversion of the helix to β-sheet like secondary structures of sequences from amyloid-β protein (KLVFFA) and tau protein (QVEVKSEKLD and VQIVYKPVD). The study also included a poly-alanine sequence as a reference system. The calculated force-field based free energy profiles predicted a flat minimum for monomers of sequences from amyloid and tau proteins corresponding to an α-helix like secondary structure. For the parallel and anti-parallel dimer of KLVFFA, double well potentials were obtained with the minima corresponding to α-helix and β-sheet like secondary structures. A similar double well-like potential has been found for dimeric forms for the sequences from tau fibril. Complementary semi-empirical and density functional theory calculations displayed similar trends, validating the force-field based free energy profiles obtained for these systems.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1390 ◽  
Author(s):  
Ilya G. Shenderovich

Due to the rigid structure of 1,3,5-triaza-7-phosphaadamantane (PTA), its 31P chemical shift solely depends on non-covalent interactions in which the molecule is involved. The maximum range of change caused by the most common of these, hydrogen bonding, is only 6 ppm, because the active site is one of the PTA nitrogen atoms. In contrast, when the PTA phosphorus atom is coordinated to a metal, the range of change exceeds 100 ppm. This feature can be used to support or reject specific structural models of organometallic transition metal complexes in solution by comparing the experimental and Density Functional Theory (DFT) calculated values of this 31P chemical shift. This approach has been tested on a variety of the metals of groups 8–12 and molecular structures. General recommendations for appropriate basis sets are reported.


Sign in / Sign up

Export Citation Format

Share Document