Oscillations and patterns in a model of simultaneous CO and C2H2 oxidation and NOx reduction in a cross-flow reactor

2015 ◽  
Vol 17 (9) ◽  
pp. 6458-6469 ◽  
Author(s):  
Otto Hadač ◽  
Martin Kohout ◽  
Jaromír Havlica ◽  
Igor Schreiber

Spatiotemporal patterns predicted by a model of a cross-flow tubular reactor with a complex heterogeneous reaction are linked to unstable reaction subnetworks identified in the mechanism.

2019 ◽  
Vol 18 (2) ◽  
pp. 314-318 ◽  
Author(s):  
Martin Dilla ◽  
Ahmet E. Becerikli ◽  
Alina Jakubowski ◽  
Robert Schlögl ◽  
Simon Ristig

Newly developed tubular reactor geometry allows intensive gas–solid interaction in photocatalytic gas-phase CO2 reduction.


2016 ◽  
Author(s):  
Weiwei Hu ◽  
Brett B. Palm ◽  
Douglas A. Day ◽  
Pedro Campuzano-Jost ◽  
Jordan E. Krechmer ◽  
...  

Abstract. Isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) can contribute substantially to organic aerosol (OA) concentrations in forested areas under low NO conditions, hence significantly influencing the regional and global OA budgets, accounting for example for 16–36 % of the submicron OA in the SE US summer. Particle evaporation measurements from a thermodenuder show that the volatility of ambient IEPOX-SOA is lower than that of bulk OA and also much lower than that of known monomer IEPOX-SOA tracer species, indicating that IEPOX-SOA likely exists mostly as oligomers in the aerosol phase. The OH aging process of ambient IEPOX-SOA was investigated with an oxidation flow reactor (OFR). New IEPOX-SOA formation in the reactor was negligible, as the OFR cannot accelerate processes such as aerosol uptake and reactions that do not scale with OH. Simulation results indicate that adding ~ 100 µg m−3 of pure H2SO4 to the ambient air allows to efficiently form IEPOX-SOA in the reactor. The heterogeneous reaction rate coefficient of ambient IEPOX-SOA with OH radical (kOH) was estimated as 4.0 ± 2.0 × 10−13 cm3 molec−1 s−1, which is equivalent to more than a 2-week lifetime. A similar kOH was found for measurements of OH oxidation of ambient Amazon forest air in an OFR. At higher OH exposures in the reactor (> 1 × 1012 molec. cm−3 s), the mass loss of IEPOX-SOA due to heterogeneous reaction was mainly due to revolatilization of fragmented reaction products. We report for the first time OH reactive uptake coefficients (γOH = 0.59 ± 0.33 in SE US and γOH = 0.68 ± 0.38 in Amazon) for SOA under ambient conditions. A relative humidity dependence of kOH and γOH was observed, consistent with surface area-limited OH uptake. No decrease of kOH was observed as OH concentrations increased. These observation of physicochemical properties of IEPOX-SOA can help to constrain OA impact on air quality and climate.


RSC Advances ◽  
2015 ◽  
Vol 5 (38) ◽  
pp. 29872-29877 ◽  
Author(s):  
Kan-Sen Chou ◽  
Chung-Yen Hsu ◽  
Bo-Tau Liu

Silver nanowires were successfully synthesized by a polyol reduction method in a continuous-flow reactor with a yield of 2 g h−1.


2018 ◽  
Vol 7 (4) ◽  
pp. 1995 ◽  
Author(s):  
Mostafa Ghobashy ◽  
Mamdouh Gadallah ◽  
Tamer T.El-Idreesy ◽  
M. A.Sadek ◽  
Hany A.Elazab

We report here, the hydrolysis of ethyl acetate by using caustic soda which is followed by means of conductance measurements which is widely used in chemical industry. The main aim of this research is to study the parameters of production of ethyl acetate by chemical reaction kinetics using an anion ion-exchange acting as a catalyst and acid-base titrations. The reaction of ethyl acetate and sodium hydroxide (caustic-soda) is done in a plug-flow reactor (steady-state tubular reactor) under the effect of different parameters including temperature, concentration and flow-rate, which allows the determination of activation energy and rate constants, due to large number of experiments. Factorial design method is used for the calculations of the experiment. It was determined that the order of the reaction is a second-order reaction.  


2001 ◽  
Vol 70 (4) ◽  
pp. 383-391 ◽  
Author(s):  
Moshe Sheintuch ◽  
Olga Nekhamkina

Author(s):  
Nattaporn Chutichairattanaphum ◽  
Phavanee Narataruksa ◽  
Karn Pana-Suppamassadu ◽  
Sabaithip Tungkamani ◽  
Chaiwat Prapainainar ◽  
...  

This paper aims to study the effect of raschig ring packing patterns using Computational Fluid Dynamics (CFD). CFD module of particle tracing was established to measure particles diffusing through the packed bed. The support raschigs catalyst was modeled in three patterns within a tubular reactor – namely, vertical staggered, chessboard staggered and reciprocal staggered pattern. A case study of Dry Methane Reforming (DMR) was investigated at 600°C, 1 atm. The study of Mean Resident Time (MRT) and E(t) function were investigated to identify the packing pattern performance. The results showed that the minimum value of the E(t), which means the flow behavior, was close to ideal plug flow behavior. MRT can be used to systematically identify the deviation from the ideal plug flow reactor of the three different packing patterns.


2001 ◽  
Vol 56 (3) ◽  
pp. 771-778 ◽  
Author(s):  
Olga Nekhamkina ◽  
Boris Y. Rubinstein ◽  
Moshe Sheintuch

1994 ◽  
Vol 49 (6) ◽  
pp. 5207-5217 ◽  
Author(s):  
Massimo Sangalli ◽  
Hsueh-Chia Chang

2011 ◽  
Vol 7 ◽  
pp. 1412-1420 ◽  
Author(s):  
Alicja Schlange ◽  
Antonio Rodolfo dos Santos ◽  
Ulrich Kunz ◽  
Thomas Turek

In this contribution we present for the first time a continuous process for the production of highly active Pt catalysts supported by carbon nanotubes by use of an electrically heated tubular reactor. The synthesized catalysts show a high degree of dispersion and narrow distributions of cluster sizes. In comparison to catalysts synthesized by the conventional oil-bath method a significantly higher electrocatalytic activity was reached, which can be attributed to the higher metal loading and smaller and more uniformly distributed Pt particles on the carbon support. Our approach introduces a simple, time-saving and cost-efficient method for fuel cell catalyst preparation in a flow reactor which could be used at a large scale.


Sign in / Sign up

Export Citation Format

Share Document