scholarly journals Continuous preparation of carbon-nanotube-supported platinum catalysts in a flow reactor directly heated by electric current

2011 ◽  
Vol 7 ◽  
pp. 1412-1420 ◽  
Author(s):  
Alicja Schlange ◽  
Antonio Rodolfo dos Santos ◽  
Ulrich Kunz ◽  
Thomas Turek

In this contribution we present for the first time a continuous process for the production of highly active Pt catalysts supported by carbon nanotubes by use of an electrically heated tubular reactor. The synthesized catalysts show a high degree of dispersion and narrow distributions of cluster sizes. In comparison to catalysts synthesized by the conventional oil-bath method a significantly higher electrocatalytic activity was reached, which can be attributed to the higher metal loading and smaller and more uniformly distributed Pt particles on the carbon support. Our approach introduces a simple, time-saving and cost-efficient method for fuel cell catalyst preparation in a flow reactor which could be used at a large scale.

2015 ◽  
Vol 794 ◽  
pp. 19-26 ◽  
Author(s):  
Robert Schröder ◽  
Arne Glodde ◽  
Muhammed Aydemir ◽  
Gordon Bach

The electrification of drives is an enormous challenge as well as an opportunity for the automobile industry and its suppliers to provide competitive and affordable technologies to participate within this change. The high costs of battery systems, the range limitations of electric vehicles and the insufficient charging network are three of the main reasons, this change is still troublesome in its realization. To realize a cost-efficient production of battery systems, a high degree of automation and an increased production throughput is necessary. This paper focuses on the pouch cell with its high energy density and presents a solution, of how to significantly increase the production throughput in the z-folding of separators. The approach pursued is the assessment of shifting from discrete pick-and-place operations to a continuous process flow, enabling a cost-efficient production of electrode-separator compounds and ultimately lithium-ion batteries.


2021 ◽  
Author(s):  
Xiao-Ya Zhai ◽  
Yifan Zhao ◽  
Guo-Ying Zhang ◽  
Bing-Yu Wang ◽  
Qi-Yun Mao

In the work, a direct Z-scheme AgBr/α-Ag2WO4 heterojunction was prepared by in-situ anion exchange at room temperature. The construction strategy is energy- and time-saving for large scale synthesis. The α-Ag2WO4...


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 464
Author(s):  
Xingren Jiang ◽  
Ning Yang ◽  
Rijie Wang

Continuous manufacturing has received increasing interest because of the advantages of intrinsic safety and enhanced mass transfer in the pharmaceutical industry. However, the difficulty for scale-up has limited the application of continuous manufacturing for a long time. Recently, the tubular flow reactor equipped with the Kenics static mixer appears to be a solution for the continuous process scale-up. Although many influence factors on the mixing performance in the Kenics static mixer have been investigated, little research has been carried out on the aspect ratio. In this study, we used the coefficient of variation as the mixing evaluation index to investigate the effect of the aspect ratio (0.2–2) on the Kenics static mixer’s mixing performance. The results indicate that a low aspect ratio helps obtain a shorter mixing time and mixer length. This study suggests that adjusting the aspect ratio of the Kenics static mixer can be a new strategy for the scale-up of a continuous process in the pharmaceutical industry.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Peng Wang ◽  
Chen Shen ◽  
Qinqin Cong ◽  
Kaili Xu ◽  
Jialin Lu

Abstract Background Biodegradation of antibiotics is a promising method for the large-scale removal of antibiotic residues in the environment. However, the enzyme that is involved in the biodegradation process is the key information to be revealed. Results In this study, the beta-lactamase from Ochrobactrumtritici that mediates the biodegradation of penicillin V was identified and characterized. When searching the proteins of Ochrobactrumtritici, the β-lactamase (OtLac) was identified. OtLac consists of 347 amino acids, and predicted isoelectric point is 7.0. It is a class C β-lactamase according to BLAST analysis. The coding gene of OtLac was amplified from the genomic DNA of Ochrobactrumtritici. The OtLac was overexpressed in E. coli BL21 (DE3) and purified with Ni2+ column affinity chromatography. The biodegradation ability of penicillin V by OtLac was identified in an in vitro study and analyzed by HPLC. The optimal temperature for OtLac is 32 ℃ and the optimal pH is 7.0. Steady-state kinetics showed that OtLac was highly active against penicillin V with a Km value of 17.86 μM and a kcat value of 25.28 s−1 respectively. Conclusions OtLac demonstrated biodegradation activity towards penicillin V potassium, indicating that OtLac is expected to degrade penicillin V in the future.


2019 ◽  
Vol 18 (2) ◽  
pp. 314-318 ◽  
Author(s):  
Martin Dilla ◽  
Ahmet E. Becerikli ◽  
Alina Jakubowski ◽  
Robert Schlögl ◽  
Simon Ristig

Newly developed tubular reactor geometry allows intensive gas–solid interaction in photocatalytic gas-phase CO2 reduction.


2017 ◽  
Vol 16 (5) ◽  
pp. 626-644 ◽  
Author(s):  
Elizaveta Sivak ◽  
Maria Yudkevich

This paper studies the dynamics of key characteristics of the academic profession in Russia based on the analysis of university faculty in the two largest cities in Russia – Moscow and St Petersburg. We use data on Russian university faculty from two large-scale comparative studies of the academic profession (‘The Carnegie Study’ carried out in 1992 in 14 countries, including Russia, and ‘The Changing Academic Profession Study’, 2007–2012, with 19 participating countries and which Russia joined in 2012) to look at how faculty’s characteristics and attitudes toward different aspects of their academic life changed over 20 years (1992–2011) such as faculty’s views on reasons to leave or to stay at a university, on university’s management and the role of faculty in decision making. Using the example of universities in the two largest Russian cities, we demonstrate that the high degree of overall centralization of governance in Russian universities barely changed in 20 years. Our paper provides comparisons of teaching/research preferences and views on statements concerning personal strain associated with work, academic career perspectives, etc., not only in Russian universities between the years 1992 and 2012, but also in Russia and other ‘Changing Academic Profession’ countries.


2010 ◽  
Vol 20-23 ◽  
pp. 700-705
Author(s):  
Tian Yuan ◽  
Shang Guan Wei ◽  
Zhi Zhong Lu

Multi-channel Virtual reality simulation technology is a kind of simulation technology, which support the grand scene and high degree of immersion, has better visualization effect. In this paper, a moving target monitoring collaboratory simulation technology based on multi-channel is studied. Firstly, study the mathematical modeling foundation of Multi-Channel technology systematically, based on the mobile target spatial model and co-simulation technology, select the appropriate applications of multi-channel technology, building laboratory simulation platform and achieved a space-based six-degree of freedom simulation of multi-channel moving target monitoring simulation. The experiment has proved that in multi-channel target monitoring co-simulation technology used in this paper has strong practicality, combine with a moving target-space model and co-simulation technology, the advantages of objective observation to solve the requirements like large-scale, realism, immersion requirements, etc.


Sign in / Sign up

Export Citation Format

Share Document