Controllable synthesis of Ni/SiO2 hollow spheres and their excellent catalytic performance in 4-nitrophenol reduction

2014 ◽  
Vol 43 (44) ◽  
pp. 16911-16918 ◽  
Author(s):  
Zhongyi Niu ◽  
Shenghuan Zhang ◽  
Yanbo Sun ◽  
Shili Gai ◽  
Fei He ◽  
...  

Hierarchical Ni nanoparticle supported silica hollow microspheres were synthesized by a unique and simple two-step method. Excellent catalytic activity in the reduction of 4-nitrophenol can be achieved on the catalysts.

RSC Advances ◽  
2015 ◽  
Vol 5 (29) ◽  
pp. 23080-23085 ◽  
Author(s):  
Peigen Zhang ◽  
Jian Zhang ◽  
Anjian Xie ◽  
Shikuo Li ◽  
Jiming Song ◽  
...  

A one step method has been developed for the fabrication of hierarchical flower-like bismuth tungstate (Bi2WO6) hollow spheres via a solvothermal process.


Nanoscale ◽  
2014 ◽  
Vol 6 (12) ◽  
pp. 7025-7032 ◽  
Author(s):  
Shenghuan Zhang ◽  
Shili Gai ◽  
Fei He ◽  
Yunlu Dai ◽  
Peng Gao ◽  
...  

Uniform Ni/SiO2 magnetic hollow microspheres were prepared by an in situ thermal decomposition and reduction route. Tiny Au nanoparticles (5 nm) were linked to Ni/SiO2 microspheres. The as-prepared Ni/SiO2@Au catalysts exhibited excellent catalytic activity for 4-nitrophenol reduction.


RSC Advances ◽  
2016 ◽  
Vol 6 (99) ◽  
pp. 97399-97403 ◽  
Author(s):  
Rui Kuang ◽  
Luyi Zheng ◽  
Ethan Cottrill ◽  
Ning Pan ◽  
Yanhui Chi ◽  
...  

A hierarchical porous MOF nanocrystal, hpCuL (L = 2,4,6-tris(3,5-dicarboxylatephenylamino)-1,3,5-triazine) was prepared via a facile gel-aging process. This nanocomposite exhibits high catalytic activity and stability for the reduction of 4-nitrophenol.


2020 ◽  
Vol 44 (9) ◽  
pp. 3681-3689 ◽  
Author(s):  
Yizhu Lei ◽  
Zaifei Chen ◽  
Guosong Lan ◽  
Renshu Wang ◽  
Xiao-Yu Zhou

Small palladium nanoparticles stabilized with phosphine-functionalized PIP displayed high catalytic activity for nitroarenes hydrogenation. Nano-size Pd particles, electron-donation effect of phosphine ligand, and surface wettability account for its excellent catalytic performance.


RSC Advances ◽  
2018 ◽  
Vol 8 (44) ◽  
pp. 24819-24826 ◽  
Author(s):  
N. K. R. Bogireddy ◽  
U. Pal ◽  
L. Martinez Gomez ◽  
V. Agarwal

Size dependent catalytic activity of AuNPs synthesized at room temperature from Coffea arabica seed extract.


Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 254 ◽  
Author(s):  
Kin Hong Liew ◽  
Tian Khoon Lee ◽  
Mohd Ambar Yarmo ◽  
Kee Shyuan Loh ◽  
Andreia F. Peixoto ◽  
...  

Herein, we report a facile procedure to synthesize the hybrid magnetic catalyst (Ru@CS-CR@Mn) using ruthenium (Ru) supported on ionically cross-linked chitosan-carrageenan (CS-CR) and manganese ferrite (MnFe2O4) nanoparticles with excellent catalytic activity. The ionic gelation of CS-CR is acting as a protecting layer to promote the encapsulation of MnFe2O4 and Ru nanoparticles by electrostatic interactions. The presence of an active metal and a CS-CR layer on the as-prepared Ru@CS-CR@Mn catalyst was well determined by a series of physicochemical analyses. Subsequently, the catalytic performances of the Ru@CS-CR@Mn catalysts were further examined in the 4-nitrophenol (4-NP) reduction reaction in the presence of sodium borohydride (reducing agent) at ambient temperature. The Ru@CS-CR@Mn catalyst performed excellent catalytic activity in the 4-NP reduction, with a turnover frequency (TOF) values of 925 h−1 and rate constant (k) of 0.078 s−1. It is worth to mentioning that the Ru@CS-CR@Mn catalyst can be recycled and reused up to at least ten consecutive cycles in the 4-NP reduction with consistency in catalytic performance. The Ru@CS-CR@Mn catalyst is particularly attractive as a catalyst due to its superior catalytic activity and superparamagnetic properties for easy separation. We foresee this catalyst having high potential to be extended in a wide range of chemistry applications.


RSC Advances ◽  
2014 ◽  
Vol 4 (70) ◽  
pp. 36951-36958 ◽  
Author(s):  
Manman Mu ◽  
Ligong Chen ◽  
Yunlong Liu ◽  
Wangwang Fang ◽  
Yang Li

Iron oxide supported on HY zeolite was prepared and exhibited excellent catalytic performance in the acylation of m-xylene with benzoyl chloride. It was characterized by XRD, BET, XPS, NH3-TPD and Py-IR. The catalytic activity of Fe2O3/HY is enhanced with the increase of Lewis acidic sites. Furthermore, the reaction parameters were optimized. Finally, the catalyst was easily separated reused for five runs without appreciable loss of catalytic activity.


2015 ◽  
Vol 3 (8) ◽  
pp. 4578-4585 ◽  
Author(s):  
Wang Yao ◽  
Fei-Long Li ◽  
Hong-Xi Li ◽  
Jian-Ping Lang

Cu2O@CuO-supported Au–Pd alloy nanoparticles prepared through the galvanic replacement approach exhibit an excellent catalytic performance in reducing 4-nitrophenol to 4-aminophenol.


RSC Advances ◽  
2021 ◽  
Vol 11 (16) ◽  
pp. 9731-9739
Author(s):  
Tao Zhang ◽  
Hongtai Chen ◽  
Hongxiao Lv ◽  
Qiaoling Li ◽  
Xiutang Zhang

The robust, double-walled, honeycomb material {[ZnHo(TDP)(H2O)]·2DMF·4H2O}n exhibits an excellent catalytic performance in the chemical fixation of CO2 and the efficient detection of Fe(iii) ions in aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document