scholarly journals Probing planar defects in nanoparticle superlattices by 3D small-angle electron diffraction tomography and real space imaging

Nanoscale ◽  
2014 ◽  
Vol 6 (22) ◽  
pp. 13803-13808 ◽  
Author(s):  
Arnaud Mayence ◽  
Dong Wang ◽  
German Salazar-Alvarez ◽  
Peter Oleynikov ◽  
Lennart Bergström

Planar defects in Pd nanoparticle superlattices were revealed by a combination of real and reciprocal space transmission electron microscopy techniques. 3D electron diffraction tomography was extended to characterize mesoscale imperfections.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Emil Christiansen ◽  
Calin Daniel Marioara ◽  
Bjørn Holmedal ◽  
Odd Sture Hopperstad ◽  
Randi Holmestad

AbstractThis paper compares the nano-scale structure of β” precipitates in a peak-aged Al-Mg-Si alloy before and after deformation. Three complementary advanced transmission electron microscopy techniques are used to reveal the structures and elucidate the interaction between dislocations and β” precipitates. We show that the needle-like and semi-coherent β” precipitates are sheared several times on different planes by dislocations during deformation, with no indications that they are bypassed or looped. Our results show that dislocations cut through precipitates and leave behind planar defects lying on planes inclined to 〈100〉 directions inside the precipitates. The results also indicate that precipitates are sheared in single steps, and the implication of this observation is discussed in terms of slip behaviour.


1992 ◽  
Vol 25 (2) ◽  
pp. 199-204 ◽  
Author(s):  
Y. G. Wang ◽  
H. Q. Ye ◽  
K. H. Kuo ◽  
J. G. Guo

High-resolution transmission electron microscopy (HRTEM) and electron diffraction were used to investigate the microstructure of natural lead oxides found in Panzhihua Mountain, China. The electron diffraction patterns showed crossing of diffraction spots along 〈110〉 directions in litharge and along 〈100〉 directions in massicot and the structural images showed the domain-like texture, probably constructed by arrays of planar defects in the fundamental structures. Based upon the structure of these oxides the possible structural models of planar defects are discussed and the orientation relationship of litharge and massicot is determined.


Author(s):  
George Guthrie ◽  
David Veblen

The nature of a geologic fluid can often be inferred from fluid-filled cavities (generally <100 μm in size) that are trapped during the growth of a mineral. A variety of techniques enables the fluids and daughter crystals (any solid precipitated from the trapped fluid) to be identified from cavities greater than a few micrometers. Many minerals, however, contain fluid inclusions smaller than a micrometer. Though inclusions this small are difficult or impossible to study by conventional techniques, they are ideally suited for study by analytical/ transmission electron microscopy (A/TEM) and electron diffraction. We have used this technique to study fluid inclusions and daughter crystals in diamond and feldspar.Inclusion-rich samples of diamond and feldspar were ion-thinned to electron transparency and examined with a Philips 420T electron microscope (120 keV) equipped with an EDAX beryllium-windowed energy dispersive spectrometer. Thin edges of the sample were perforated in areas that appeared in light microscopy to be populated densely with inclusions. In a few cases, the perforations were bound polygonal sides to which crystals (structurally and compositionally different from the host mineral) were attached (Figure 1).


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


1983 ◽  
Vol 29 ◽  
Author(s):  
M. I. Birjega ◽  
C. A. Constantin ◽  
M. Dinescu ◽  
I. Th. Florescu ◽  
I. N. Mihailescu ◽  
...  

ABSTRACTThe crystallization and oxidation processes of thin, free-standing (FS), sputtered Cr films under the action of cw CO2 laser irradiation were studied by transmission electron microscopy (TEM) and transmission electron diffraction (TED). The crystallization is induced at power densities above 28.65 W cm−2, dwell time of 1 s, and the oxidation at power densities of 48.1 W cm−2 and longer dwell times.


2020 ◽  
Vol 1013 ◽  
pp. 52-58
Author(s):  
Xu Dong Lu ◽  
Song Yi Shi ◽  
Bo Wen ◽  
Ya Wei Zhang ◽  
Jin Hui Du

The relaxation properties of GH4169 alloy were studied contrastively at temperatures ranging from 600 oC to 700 °C and initial stress ranging from 550 MPa to 850 MPa. The relationship between the microstructure and relaxation behavior was evaluated using transmission electron microscopy techniques. It was found that the relaxation limit and relaxation stability of the alloy decreased obviously with the increase of temperature. Further investigations show that the relaxation behavior is mainly depend on both precipitate characteristics and its interaction with dislocations. The alloy with higher strength lever has more excellent stress relaxation stability, because of the inhibition of a large number subgrains on dislocations motion.


2009 ◽  
Vol 64 (8) ◽  
pp. 922-928 ◽  
Author(s):  
Manuel Christian Schaloske ◽  
Hansjürgen Mattausch ◽  
Viola Duppel ◽  
Lorenz Kienle ◽  
Arndt Simon

The compounds Pr6(C2)Br10, Pr10(C2)2Br15 and Pr14(C2)3Br20 were prepared from PrBr3 and the appropriate amounts of Pr and C and characterized by X-ray structure analyses of single crystals. All three compounds crystallize in space group P1 with lattice parameters a = 7.571(2), b = 9.004(2), c = 9.062(2) Å ,α = 108.57(3), β = 97.77(3), γ = 106.28(3)◦ for Pr6(C2)Br10; a = 9.098(2), b = 10.127(2), c = 10.965(2) A° , α = 70.38(3), β = 66.31(3), γ = 70.84(3)◦ for Pr10(C2)2Br15; a = 9.054(2), b = 10.935(2), c = 13.352(3) Å , α = 86.27(3), β = 72.57(3), γ = 66.88(3)◦ for Pr14(C2)3Br20. They are members of a general series Ln4n+2(C2)nBr5n+5 and isostructural with the corresponding iodides known for Ln = La, Ce, Pr. Pr6(C2)Br10 was further characterized via transmission electron microscopy techniques


Sign in / Sign up

Export Citation Format

Share Document