Insight into the effects of surface oxidation and carbonization on the electronic properties of silicon quantum dots and silicon slabs: a density functional study

RSC Advances ◽  
2014 ◽  
Vol 4 (105) ◽  
pp. 60948-60952 ◽  
Author(s):  
Yuheng Zeng ◽  
Liang Chen ◽  
Guoqiang Liu ◽  
Hua Xu ◽  
Weijie Song

In this work, we investigated the effects of surface backbond-oxygen oxidation and surface substitute-carbon carbonization on carrier recombination and transportation of 10-, 12- and 14 Å Si quantum dots (QDs).

2016 ◽  
Vol 846 ◽  
pp. 375-382 ◽  
Author(s):  
Muhammad Mus-'ab Anas ◽  
Geri Gopir

We have carried out a series of DFT calculations to investigate changes on the structural and electronic properties of Silicon (Si) quantum dots as a function of surface passivation. In particular, we have study non-polar passivation effect of hydrogen (H) and methyl (CH3) at the surface of quantum dots. From geometry optimization result, we find that clusters with reconstructed surfaces a complete methyl passivation is possible and steric repulsion prevents full passivation of Si dots with unreconstructed surfaces. On the electronic properties point of view, it is noticed for small nanocrystals, the presence of mini-gaps are more pronounced which can limit the non-radiative relaxation of excitons. Obviously, methyl passivation weakly affects the band gap values of silicon quantum dots, while it substantially decreases the band gap and reduce mini-gap appearance compared to hydrogen passivation Si QDs. On the basis of our results we propose that methyl terminated quantum dots may be size selected taking advantage of the reduction on mini-gap and the localization of electron as a function of the cluster size.


2018 ◽  
Author(s):  
Oscar A. Douglas-Gallardo ◽  
Cristián Gabriel Sánchez ◽  
Esteban Vöhringer-Martinez

<div> <div> <div> <p>Nowadays, the search of efficient methods able to reduce the high atmospheric carbon dioxide concentration has turned into a very dynamic research area. Several environmental problems have been closely associated with the high atmospheric level of this greenhouse gas. Here, a novel system based on the use of surface-functionalized silicon quantum dots (sf -SiQDs) is theoretically proposed as a versatile device to bind carbon dioxide. Within this approach, carbon dioxide trapping is modulated by a photoinduced charge redistribution between the capping molecule and the silicon quantum dots (SiQDs). Chemical and electronic properties of the proposed SiQDs have been studied with Density Functional Theory (DFT) and Density Functional Tight-Binding (DFTB) approach along with a Time-Dependent model based on the DFTB (TD-DFTB) framework. To the best of our knowledge, this is the first report that proposes and explores the potential application of a versatile and friendly device based on the use of sf -SiQDs for photochemically activated carbon dioxide fixation. </p> </div> </div> </div>


2021 ◽  
Vol 35 (08) ◽  
pp. 2130001
Author(s):  
Yoshitaka Fujimoto

Molecular sensor applications are used in different fields including environmental monitoring and medical diagnosis. Graphene, a single atomic layer consisting of the hexagonally arranged carbon material, is one of the most promising materials for ideal channels in field-effect transistors to be used as electronic sensing applications owing to its lightweight, mechanical robustness, high electronic conductivity and large surface-to-volume ratio. This paper provides a review of molecular adsorptions, electronic properties and quantum transport of graphene based on the first-principles density-functional study. The adsorption properties of environmentally polluting or toxic molecules and electronic transport of graphene are revealed. The possibility of detecting these molecules selectively is also discussed for designing the graphene-based sensor applications.


2003 ◽  
Vol 67 (3) ◽  
Author(s):  
E. Räsänen ◽  
H. Saarikoski ◽  
M. J. Puska ◽  
R. M. Nieminen

Sign in / Sign up

Export Citation Format

Share Document