Non-mercury catalytic acetylene hydrochlorination over Ru catalysts enhanced by carbon nanotubes

RSC Advances ◽  
2015 ◽  
Vol 5 (12) ◽  
pp. 9002-9008 ◽  
Author(s):  
Guangbi Li ◽  
Wei Li ◽  
Haiyang Zhang ◽  
Yanfeng Pu ◽  
Mengxia Sun ◽  
...  

Ru catalysts deposited inside the channels of the CNTs show higher catalytic activity. Ru-in-CNT catalyst exhibited an acetylene conversion of 95.0% at 170 °C and 10 h. CNTs with an inner diameter of 3–7 nm can functionalize as an efficient support.

RSC Advances ◽  
2015 ◽  
Vol 5 (125) ◽  
pp. 103669-103673 ◽  
Author(s):  
Maofei Ran ◽  
Wei Chu ◽  
Yan Liu ◽  
Armando Borgna

The catalytic activity of a Ru/CNT-in sample was enhanced with the decrease of the CNT inner diameter and it was much higher than that of Ru/CNTs-out.


Author(s):  
Fan Li ◽  
Xueya Dai ◽  
Xingyu Lu ◽  
Chao Wang ◽  
Wei Qi

Dehydration of n-butanol (nB) to corresponding olefins (butene) is an important reaction route to realize the efficient utilization of bulk bio-alcohols. In this work, a novel phosphate modified oxidized multi-walled...


2021 ◽  
Vol 1036 ◽  
pp. 130-136
Author(s):  
Ting Qun Tan ◽  
Lei Geng ◽  
Yan Lin ◽  
Yan He

In order to prepare carbon nanotubes with high specific surface area, small diameter, low resistivity, high purity and high catalytic activity, the Fe-Mo/Al2O3 catalyst was prepared based on the microreactor. The influence of different Fe/Al molar ratios on the catalyst and the carbon nanotubes prepared was studied through BET, SEM, TEM and other detection methods. Studies have shown that the pore structure of the catalyst is dominated by slit pores at a lower Fe/Al molar ratio. The catalytic activity is the highest when the Fe/Al molar ratio is 1:1, reaching 74.1%. When the Fe/Al molar ratio is 1:2, the catalyst has a higher specific surface area, the maximum pore size is 8.63 nm, and the four-probe resistivity and ash content of the corresponding carbon nanotubes are the lowest. The higher the proportion of aluminum, the higher the specific surface area of the catalyst and the carbon nanotubes, and the finer the diameter of the carbon nanotubes, which gradually tends to relax. The results show that when the Fe/Al molar ratio is 1:2, although the catalytic activity of the catalyst is not the highest, the carbon nanotubes prepared have the best performance.


2013 ◽  
Vol 98 ◽  
pp. 94-103 ◽  
Author(s):  
Wojciech Tokarz ◽  
Grzegorz Lota ◽  
Elzbieta Frackowiak ◽  
Andrzej Czerwiński ◽  
Piotr Piela

2017 ◽  
Vol 19 (33) ◽  
pp. 22344-22354 ◽  
Author(s):  
Sajjad Ali ◽  
Tian Fu Liu ◽  
Zan Lian ◽  
Bo Li ◽  
Dang Sheng Su

The mechanism of CO oxidation by O2 on a single Au atom supported on pristine, mono atom vacancy (m), di atom vacancy (di) and the Stone Wales defect (SW) on single walled carbon nanotube (SWCNT) surface is systematically investigated theoretically using density functional theory.


Sign in / Sign up

Export Citation Format

Share Document