Activatable triplet photosensitizers: magic bullets for targeted photodynamic therapy

2014 ◽  
Vol 2 (30) ◽  
pp. 5982-5997 ◽  
Author(s):  
Poulomi Majumdar ◽  
Raju Nomula ◽  
Jianzhang Zhao

The review summarizes methods to design tumor cells/tissue targeted photodynamic therapeutic compounds to produce cytotoxic singlet oxygen upon photoirradiation.

2020 ◽  
Author(s):  
busenur Aslanoglu ◽  
Ilya Yakavets ◽  
Vladimir Zorin ◽  
Henri-Pierre Lassalle ◽  
Francesca Ingrosso ◽  
...  

Computational tools have been used to study the photophysical and photochemical features of photosensitizers in photodynamic therapy (PDT) –a minimally invasive, less aggressive alternative for cancer treatment. PDT is mainly based by the activation of molecular oxygen through the action of a photoexcited sensitizer (photosensitizer). Temoporfin, widely known as mTHPC, is a second-generation photosensitizer, which produces the cytotoxic singlet oxygen when irradiated with visible light and hence destroys tumor cells. However, the bioavailability of the mostly hydrophobic photosensitizer, and hence its incorporation into the cells, is fundamental to achieve the desired effect on malignant tissues by PDT. In this study, we focus on the optical properties of the temoporfin chromophore in different environments –in <i>vacuo</i>, in solution, encapsulated in drug delivery agents, namely cyclodextrin, and interacting with a lipid bilayer.


RSC Advances ◽  
2021 ◽  
Vol 11 (25) ◽  
pp. 15323-15331
Author(s):  
Yao Xu ◽  
Xiang Wang ◽  
Kang Song ◽  
Jun Du ◽  
Jinliang Liu ◽  
...  

Three new iridium complexes were synthesized and fabricated with BSA to form nano-photosensitizers, which can catalyze oxygen to produce singlet oxygen to achieve photodynamic therapy of tumor cells.


2020 ◽  
Author(s):  
busenur Aslanoglu ◽  
Ilya Yakavets ◽  
Vladimir Zorin ◽  
Henri-Pierre Lassalle ◽  
Francesca Ingrosso ◽  
...  

Computational tools have been used to study the photophysical and photochemical features of photosensitizers in photodynamic therapy (PDT) –a minimally invasive, less aggressive alternative for cancer treatment. PDT is mainly based by the activation of molecular oxygen through the action of a photoexcited sensitizer (photosensitizer). Temoporfin, widely known as mTHPC, is a second-generation photosensitizer, which produces the cytotoxic singlet oxygen when irradiated with visible light and hence destroys tumor cells. However, the bioavailability of the mostly hydrophobic photosensitizer, and hence its incorporation into the cells, is fundamental to achieve the desired effect on malignant tissues by PDT. In this study, we focus on the optical properties of the temoporfin chromophore in different environments –in <i>vacuo</i>, in solution, encapsulated in drug delivery agents, namely cyclodextrin, and interacting with a lipid bilayer.


2020 ◽  
Vol 11 (25) ◽  
pp. 6479-6484 ◽  
Author(s):  
Sujie Qi ◽  
Nahyun Kwon ◽  
Yubin Yim ◽  
Van-Nghia Nguyen ◽  
Juyoung Yoon

We designed and investigated novel mitochondria-targeting heavy-atom-free BODIPY photosensitizers (R-BODs) that possessed considerable singlet oxygen generation abilities and good fluorescence properties for imaging-guided photodynamic therapy (PDT).


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 896 ◽  
Author(s):  
Kathrin Butzbach ◽  
Matthias Konhäuser ◽  
Matthias Fach ◽  
Denise Bamberger ◽  
Benjamin Breitenbach ◽  
...  

In photodynamic therapy (PDT), photosensitizers and light are used to cause photochemically induced cell death. The selectivity and the effectiveness of the phototoxicity in cancer can be increased by a specific uptake of the photosensitizer into tumor cells. A promising target for this goal is the folic acid receptor α (FRα), which is overexpressed on the surface of many tumor cells and mediates an endocytotic uptake. Here, we describe a polysaccharide-based nanoparticle system suitable for targeted uptake and its photochemical and photobiological characterization. The photosensitizer 5, 10, 15, 20-tetraphenyl-21H, 23H-porphyrine (TPP) was encapsulated in spermine- and acetal-modified dextran (SpAcDex) nanoparticles and conjugated with folic acid (FA) on the surface [SpAcDex(TPP)-FA]. The particles are successfully taken up by human HeLa-KB cells, and a light-induced cytotoxicity is observable. An excess of free folate as the competitor for the FRα-mediated uptake inhibits the phototoxicity. In conclusion, folate-modified SpAcDex particles are a promising drug delivery system for a tumor cell targeted photodynamic therapy.


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 978 ◽  
Author(s):  
Irati Beltrán Hernández ◽  
Mathieu L. Angelier ◽  
Tommaso Del Buono D’Ondes ◽  
Alessia Di Maggio ◽  
Yingxin Yu ◽  
...  

Nanobody-targeted photodynamic therapy (NB-PDT) has been recently developed as a more tumor-selective approach rather than conventional photodynamic therapy (PDT). NB-PDT uses nanobodies that bind to tumor cells with high affinity, to selectively deliver a photosensitizer, i.e., a chemical which becomes cytotoxic when excited with light of a particular wavelength. Conventional PDT has been reported to be able to induce immunogenic cell death, characterized by the exposure/release of damage-associated molecular patterns (DAMPs) from dying cells, which can lead to antitumor immunity. We explored this aspect in the context of NB-PDT, targeting the epidermal growth factor receptor (EGFR), using high and moderate EGFR-expressing cells. Here we report that, after NB-PDT, the cytoplasmic DAMP HSP70 was detected on the cell membrane of tumor cells and the nuclear DAMP HMGB1 was found in the cell cytoplasm. Furthermore, it was shown that NB-PDT induced the release of the DAMPs HSP70 and ATP, as well as the pro- inflammatory cytokines IL- 1β and IL-6. Conditioned medium from high EGFR-expressing tumor cells treated with NB-PDT led to the maturation of human dendritic cells, as indicated by the upregulation of CD86 and MHC II on their cell surface, and the increased release of IL-12p40 and IL-1β. Subsequently, these dendritic cells induced CD4+ T cell proliferation, accompanied by IFNγ release. Altogether, the initial steps reported here point towards the potential of NB-PDT to stimulate the immune system, thus giving this selective-local therapy a systemic reach.


2020 ◽  
Author(s):  
busenur Aslanoglu ◽  
Ilya Yakavets ◽  
Vladimir Zorin ◽  
Henri-Pierre Lassalle ◽  
Francesca Ingrosso ◽  
...  

Computational tools have been used to study the photophysical and photochemical features of photosensitizers in photodynamic therapy (PDT) –a minimally invasive, less aggressive alternative for cancer treatment. PDT is mainly based by the activation of molecular oxygen through the action of a photoexcited sensitizer (photosensitizer). Temoporfin, widely known as mTHPC, is a second-generation photosensitizer, which produces the cytotoxic singlet oxygen when irradiated with visible light and hence destroys tumor cells. However, the bioavailability of the mostly hydrophobic photosensitizer, and hence its incorporation into the cells, is fundamental to achieve the desired effect on malignant tissues by PDT. In this study, we focus on the optical properties of the temoporfin chromophore in different environments –in <i>vacuo</i>, in solution, encapsulated in drug delivery agents, namely cyclodextrin, and interacting with a lipid bilayer.


2004 ◽  
Vol 01 (1) ◽  
pp. 9-13
Author(s):  
Luis Alcides Brandini DE BONI

What is Photodynamic therapy (PDT)? PDT is the use of light to detect and cure tumors. In photodynamic therapy, the patient is injected with a photosensitizer with selectivity by the tissues of the tumor cells, followed by the irradiation of the tumor. The photosensitizer absorbs light and transfers its energy to molecular oxygen, generating singlet oxygen that attacks tissues.


Sign in / Sign up

Export Citation Format

Share Document