Label-free photoelectrochemical cytosensing via resonance energy transfer using gold nanoparticle-enhanced carbon dots

2015 ◽  
Vol 51 (75) ◽  
pp. 14259-14262 ◽  
Author(s):  
Shanshan Liu ◽  
Huijuan Cao ◽  
Zhaoyin Wang ◽  
Wenwen Tu ◽  
Zhihui Dai

A universal and label-free photoelectrochemical biosensing platform for the direct detection of HeLa cells was developed based on carbon-dots–AuNPs–cysteamine conjugates.

2021 ◽  
Author(s):  
Alagan Muthurasu ◽  
V GANESH

Carbon dots (CDs) exhibiting fluorescence property are generally derived from carbonaceous materials and possessing ultra small size with various exciting physical, chemical and photo-properties that have been used in many...


Nanomedicine ◽  
2021 ◽  
Author(s):  
Abolghasem Abbasi Kajani ◽  
Masoud Ayatollahi Mehrgardi

Aim: To develop a novel theranostic nanoplatform for simultaneous fluorescent monitoring and stimuli-triggered drug delivery. Materials & methods: Different microscopic and spectroscopic techniques were used for the characterization of nanocarriers. MCF-7 and human umbilical vein endothelial cell lines were cultured and treated with different doses of doxorubicin-loaded nanocarriers. The cell viability and drug release were studied using MTT assay and fluorescence microscopy. Results: Biocompatible and mono-disperse nanocarriers represent hollow and mesoporous structures with the calculated surface area of 552.83 m2.g-1, high magnetic activity (12.6 emu.g-1), appropriate colloidal stability and high drug loading capacity (up to 61%). Conclusion: Taxane-based carbon dots act as the pH-responsive gatekeepers for the controlled release of doxorubicin into cancer cells and provide a fluorescence resonance energy transfer system for real-time monitoring of drug delivery.


The Analyst ◽  
2020 ◽  
Vol 145 (22) ◽  
pp. 7412-7420
Author(s):  
Hui Liu ◽  
Hao Yin ◽  
TingTing Yang ◽  
HouCheng Ding ◽  
YongPing Dong

A label-free ECL sensor for thrombin was fabricated based on ECL resonance energy transfer occurred between ZnGa2O4/g-C3N4 and AuNP/GR nanocomposites, which revealed a new role of spinel-type semiconductor oxides in the fabrication of ECL sensors.


2009 ◽  
Vol 106 (37) ◽  
pp. 15651-15656 ◽  
Author(s):  
Hiromi Imamura ◽  
Kim P. Huynh Nhat ◽  
Hiroko Togawa ◽  
Kenta Saito ◽  
Ryota Iino ◽  
...  

Adenosine 5′-triphosphate (ATP) is the major energy currency of cells and is involved in many cellular processes. However, there is no method for real-time monitoring of ATP levels inside individual living cells. To visualize ATP levels, we generated a series of fluorescence resonance energy transfer (FRET)-based indicators for ATP that were composed of the ε subunit of the bacterial FoF1-ATP synthase sandwiched by the cyan- and yellow-fluorescent proteins. The indicators, named ATeams, had apparent dissociation constants for ATP ranging from 7.4 μM to 3.3 mM. By targeting ATeams to different subcellular compartments, we unexpectedly found that ATP levels in the mitochondrial matrix of HeLa cells are significantly lower than those of cytoplasm and nucleus. We also succeeded in measuring changes in the ATP level inside single HeLa cells after treatment with inhibitors of glycolysis and/or oxidative phosphorylation, revealing that glycolysis is the major ATP-generating pathway of the cells grown in glucose-rich medium. This was also confirmed by an experiment using oligomycin A, an inhibitor of FoF1-ATP synthase. In addition, it was demonstrated that HeLa cells change ATP-generating pathway in response to changes of nutrition in the environment.


Sign in / Sign up

Export Citation Format

Share Document