Enhancement of heat conduction in carbon nanotubes filled with fullerene molecules

2015 ◽  
Vol 17 (41) ◽  
pp. 27520-27526 ◽  
Author(s):  
Liu Cui ◽  
Yanhui Feng ◽  
Xinxin Zhang

C60-encapsulation-induced high thermal conductivity of carbon nanopeapods owing to phonon couplings at low frequencies and enhancement in mass transfer.

2015 ◽  
Vol 1096 ◽  
pp. 520-523
Author(s):  
Yun Peng Song ◽  
Yan He ◽  
Yuan Zheng Tang

The thermal conductivity at 300K of (6, 6) carbon nanotubes and chemi-adsorbed carbon nanotubes with methyl groups at random positions through covalent bonding (chemisorption) has been calculated as a function of adsorption density using molecular dynamics. The results exhibit a rapid drop in thermal conductivity with chemisorptions, even chemisorption as little as 1.0% of the nanotube carbon atoms reduces the thermal conductivity significantly. Investigate its reason, defects caused by chemisorption blocking the transmission of phonons which plays a leading role in the heat conduction of nanotubes, affecting the temperature distribution and energy transmission, leading to the thermal conductivity decline.


1991 ◽  
Vol 113 (4) ◽  
pp. 395-401 ◽  
Author(s):  
M. W. Harris ◽  
A. S. Lavine

Heat generated during grinding can cause thermal damage to the workpiece and wheel. It is therefore important to understand the thermal aspects of grinding. This paper addresses heat conduction into the wheel, by considering a single abrasive grain in contact with the workpiece. In particular, the effect of the bond material on conduction into the grain is investigated. The results for the grain surface temperature are given in terms of parameters describing the geometry and thermal properties of the grain and bond. The beneficial effect of a high thermal conductivity for both the grain and the bond is clearly demonstrated.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 475 ◽  
Author(s):  
Fengyin Zhang ◽  
Huijun Feng ◽  
Lingen Chen ◽  
Jiang You ◽  
Zhihui Xie

A heat conduction model with an arrow-shaped high thermal conductivity channel (ASHTCC) in a square heat generation body (SHGB) is established in this paper. By taking the minimum maximum temperature difference (MMTD) as the optimization goal, constructal designs of the ASHTCC are conducted based on single, two, and three degrees of freedom optimizations under the condition of fixed ASHTCC material. The outcomes illustrate that the heat conduction performance (HCP) of the SHGB is better when the structure of the ASHTCC tends to be flat. Increasing the thermal conductivity ratio and area fraction of the ASHTCC material can improve the HCP of the SHGB. In the discussed numerical examples, the MMTD obtained by three degrees of freedom optimization are reduced by 8.42% and 4.40%, respectively, compared with those obtained by single and two degrees of freedom optimizations. Therefore, three degrees of freedom optimization can further improve the HCP of the SHGB. Compared the HCPs of the SHGBs with ASHTCC and the T-shaped one, the MMTD of the former is reduced by 13.0%. Thus, the structure of the ASHTCC is proven to be superior to that of the T-shaped one. The optimization results gained in this paper have reference values for the optimal structure designs for the heat dissipations of various electronic devices.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Hai-Dong Wang ◽  
Bing-Yang Cao ◽  
Zeng-Yuan Guo

Fourier’s law is a phenomenological law to describe the heat transfer process. Although it has been widely used in a variety of engineering application areas, it is still questionable to reveal the physical essence of heat transfer. In order to describe the heat transfer phenomena universally, Guo has developed a general heat conduction law based on the concept of thermomass, which is defined as the equivalent mass of phonon gas in dielectrics according to Einstein’s mass–energy relation. The general law degenerates into Fourier’s law when the thermal inertia is neglected as the heat flux is not very high. The heat flux in carbon nanotubes (CNTs) may be as high as 1012 W/m2. In this case, Fourier’s law no longer holds. However, what is estimated through the ratio of the heat flux to the temperature gradient by molecular dynamics (MD) simulations or experiments is only the apparent thermal conductivity (ATC); which is smaller than the intrinsic thermal conductivity (ITC). The existing experimental data of single-walled CNTs under the high-bias current flows are applied to study the non-Fourier heat conduction under the ultrahigh heat flux conditions. The results show that ITC and ATC are almost equal under the low heat flux conditions when the thermal inertia is negligible, while the difference between ITC and ATC becomes more notable as the heat flux increases or the temperature drops.


Sign in / Sign up

Export Citation Format

Share Document