Thermal Aspects of Grinding: The Effect of the Wheel Bond on Heat Transfer to an Abrasive Grain

1991 ◽  
Vol 113 (4) ◽  
pp. 395-401 ◽  
Author(s):  
M. W. Harris ◽  
A. S. Lavine

Heat generated during grinding can cause thermal damage to the workpiece and wheel. It is therefore important to understand the thermal aspects of grinding. This paper addresses heat conduction into the wheel, by considering a single abrasive grain in contact with the workpiece. In particular, the effect of the bond material on conduction into the grain is investigated. The results for the grain surface temperature are given in terms of parameters describing the geometry and thermal properties of the grain and bond. The beneficial effect of a high thermal conductivity for both the grain and the bond is clearly demonstrated.

Holzforschung ◽  
2008 ◽  
Vol 62 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Johannes Konnerth ◽  
David Harper ◽  
Seung-Hwan Lee ◽  
Timothy G. Rials ◽  
Wolfgang Gindl

Abstract Cross sections of wood adhesive bonds were studied by scanning thermal microscopy (SThM) with the aim of scrutinizing the distribution of adhesive in the bond line region. The distribution of thermal conductivity, as well as temperature in the bond line area, was measured on the surface by means of a nanofabricated thermal probe offering high spatial and thermal resolution. Both the thermal conductivity and the surface temperature measurements were found suitable to differentiate between materials in the bond region, i.e., adhesive, cell walls and embedding epoxy. Of the two SThM modes available, the surface temperature mode provided images with superior optical contrast. The results clearly demonstrate that the polyurethane adhesive did not cause changes of thermal properties in wood cell walls with adhesive contact. By contrast, cell walls adjacent to a phenol-resorcinol-formaldehyde adhesive showed distinctly changed thermal properties, which is attributed to the presence of adhesive in the wood cell wall.


1986 ◽  
Vol 108 (4) ◽  
pp. 298-302 ◽  
Author(s):  
C. A. van der Star ◽  
G. A. M. van Meurs ◽  
C. J. Hoogendoorn

The heat transfer between a cylinder and the surrounding water-saturated soil is studied numerically. Parameters which influence this heat transfer are thermal properties of the soil, dimension and thermal conductivity of the tube material, and a regional groundwater flow. The results are compared to analytical approximations. When two tubes are present, their mutual distance is also such a parameter.


2019 ◽  
Vol 11 (1) ◽  
pp. 153-156
Author(s):  
István Padrah ◽  
Judit Pásztor ◽  
Rudolf Farmos

Abstract Thermal conduction is a heat transfer mechanism. It is present in our everyday lives. Studying thermal conductivity helps us better understand the phenomenon of heat conduction. The goal of this paper is to measure the thermal conductivity of various materials and compare results with the values provided by the manufacturers. To achieve this we assembled a measuring instrument and performed measurements on heat insulating materials.


Author(s):  
Ruixian Cai ◽  
Na Zhang

The analytical solutions of unsteady heat conduction with variable thermal properties (thermal conductivity, density and specific heat are functions of temperature or coordinates) are meaningful in theory. In addition, they are very useful to the computational heat conduction to check the numerical solutions and to develop numerical schemes, grid generation methods and so forth. Such solutions in rectangular coordinates have been derived by the authors; some other solutions for unsteady point symmetrical heat conduction in spherical coordinates are given in this paper to promote the heat conduction theory and to develop the relative computational heat conduction.


2020 ◽  
Vol 1002 ◽  
pp. 303-310
Author(s):  
Sudad Issam Younis ◽  
Haqi I. Qatta ◽  
Mohammed Jalal Abdul Razzaq ◽  
Khalid S. Shibib

In this work, an inverse heat transfer analysis was used to determine thermal conductivity and specific heat of tissue using special iteration. A laser with a long wavelength was utilized to impose heat to the tissue. The heat that induced in the sample causes an increase in the temperature of a tissue which is measured by a thermocouple. The readings were used together with that analytically obtained from the solution of the heat equation in an iterative procedure to obtain the thermal properties of tissue. By using this method, accurate thermal conductivity and specific heat of tissue could be obtained. It was found that the maximum error in output result and the error in input data were in the same order and that there was a linear relationship between output and input errors.


2020 ◽  
Vol 8 (16) ◽  
pp. 5380-5388
Author(s):  
Chao Liu ◽  
Wei Wu ◽  
Dietmar Drummer ◽  
Wanting Shen ◽  
Yi Wang ◽  
...  

The needle-like Al2O3–ZnO nanowire hybrid filler endows polymer composites with high thermal conductivity, mechanical and thermal properties.


1987 ◽  
Vol 109 (4) ◽  
pp. 330-335 ◽  
Author(s):  
P. A. Patel ◽  
J. W. Valvano ◽  
J. A. Pearce ◽  
S. A. Prahl ◽  
C. R. Denham

A microcomputer based instrument to measure effective thermal conductivity and diffusivity at the surface of a tissue has been developed. Self-heated spherical thermistors, partially embedded in an insulator, are used to simultaneously heat tissue and measure the resulting temperature rise. The temperature increase of the thermistor for a given applied power is a function of the combined thermal properties of the insulator, the thermistor, and the tissue. Once the probe is calibrated, the instrument accurately measures the thermal properties of tissue. Conductivity measurements are accurate to 2 percent and diffusivity measurements are accurate to 4 percent. A simplified bioheat equation is used which assumes the effective tissue thermal conductivity is a linear function of perfusion. Since tissue blood flow strongly affects heat transfer, the surface thermistor probe is quite sensitive to perfusion.


2012 ◽  
Vol 452-453 ◽  
pp. 1384-1388
Author(s):  
Zeng Yan ◽  
Xiao Yang Huang ◽  
Wei Dong Zhou ◽  
Sheng Kai Yu

Heat transfer and lubricant depletion in a HAMR system with multilayer disk substrate are numerically simulated in this study. Cases under two types of multilayer disk substrates with different materials on the top layer as well as different laser powers are examined. The results show the significant effects of the material property and the laser power. Compared with pure glass disk substrate, larger thermal conductivity of top-layer material in the multilayer disk substrate causes faster heat conduction and thus substantial reductions in the temperature increase and lubricant depletion on the top surface. Hence it is necessary and important to incorporate the real multilayer structure in modeling heat transfer and lubricant depletion in practical HAMR systems.


Sign in / Sign up

Export Citation Format

Share Document