Fabrication of transparent SERS platform via interface self-assembly of gold nanorods and gel trapping technique for on-site real time detection

2015 ◽  
Vol 17 (46) ◽  
pp. 31324-31331 ◽  
Author(s):  
Xiang Lin ◽  
Wu-Li-Ji Hasi ◽  
Si-Qin-Gao-Wa Han ◽  
Xiu-Tao Lou ◽  
Dian-Yang Lin ◽  
...  

A Au nanorod PDMS SERS platform has been developed for the on-site detection of contaminants in water and on real-world surfaces.

2018 ◽  
Vol 29 (27) ◽  
pp. 274001 ◽  
Author(s):  
Jianhao Wang ◽  
Zhilan Zhu ◽  
Lin Qiu ◽  
Jianpeng Wang ◽  
Xiang Wang ◽  
...  

Nano Letters ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 2334-2342 ◽  
Author(s):  
Rebecca Dutta ◽  
Orly Liba ◽  
Elliott D. SoRelle ◽  
Yonatan Winetraub ◽  
Vishnu C. Ramani ◽  
...  

Author(s):  
Alan S. Rudolph ◽  
Ronald R. Price

We have employed cryoelectron microscopy to visualize events that occur during the freeze-drying of artificial membranes by employing real time video capture techniques. Artificial membranes or liposomes which are spherical structures within internal aqueous space are stabilized by water which provides the driving force for spontaneous self-assembly of these structures. Previous assays of damage to these structures which are induced by freeze drying reveal that the two principal deleterious events that occur are 1) fusion of liposomes and 2) leakage of contents trapped within the liposome [1]. In the past the only way to access these events was to examine the liposomes following the dehydration event. This technique allows the event to be monitored in real time as the liposomes destabilize and as water is sublimed at cryo temperatures in the vacuum of the microscope. The method by which liposomes are compromised by freeze-drying are largely unknown. This technique has shown that cryo-protectants such as glycerol and carbohydrates are able to maintain liposomal structure throughout the drying process.


2012 ◽  
Author(s):  
Anthony D. McDonald ◽  
Chris Schwarz ◽  
John D. Lee ◽  
Timothy L. Brown

2018 ◽  
Author(s):  
Kyle Plunkett

This manuscript provides two demonstrations of how Augmented Reality (AR), which is the projection of virtual information onto a real-world object, can be applied in the classroom and in the laboratory. Using only a smart phone and the free HP Reveal app, content rich AR notecards were prepared. The physical notecards are based on Organic Chemistry I reactions and show only a reagent and substrate. Upon interacting with the HP Reveal app, an AR video projection shows the product of the reaction as well as a real-time, hand-drawn curved-arrow mechanism of how the product is formed. Thirty AR notecards based on common Organic Chemistry I reactions and mechanisms are provided in the Supporting Information and are available for widespread use. In addition, the HP Reveal app was used to create AR video projections onto laboratory instrumentation so that a virtual expert can guide the user during the equipment setup and operation.


2018 ◽  
Author(s):  
Elaine A. Kelly ◽  
Judith E. Houston ◽  
Rachel Evans

Understanding the dynamic self-assembly behaviour of azobenzene photosurfactants (AzoPS) is crucial to advance their use in controlled release applications such as<i></i>drug delivery and micellar catalysis. Currently, their behaviour in the equilibrium <i>cis-</i>and <i>trans</i>-photostationary states is more widely understood than during the photoisomerisation process itself. Here, we investigate the time-dependent self-assembly of the different photoisomers of a model neutral AzoPS, <a>tetraethylene glycol mono(4′,4-octyloxy,octyl-azobenzene) </a>(C<sub>8</sub>AzoOC<sub>8</sub>E<sub>4</sub>) using small-angle neutron scattering (SANS). We show that the incorporation of <i>in-situ</i>UV-Vis absorption spectroscopy with SANS allows the scattering profile, and hence micelle shape, to be correlated with the extent of photoisomerisation in real-time. It was observed that C<sub>8</sub>AzoOC<sub>8</sub>E<sub>4</sub>could switch between wormlike micelles (<i>trans</i>native state) and fractal aggregates (under UV light), with changes in the self-assembled structure arising concurrently with changes in the absorption spectrum. Wormlike micelles could be recovered within 60 seconds of blue light illumination. To the best of our knowledge, this is the first time the degree of AzoPS photoisomerisation has been tracked <i>in</i><i>-situ</i>through combined UV-Vis absorption spectroscopy-SANS measurements. This technique could be widely used to gain mechanistic and kinetic insights into light-dependent processes that are reliant on self-assembly.


Sign in / Sign up

Export Citation Format

Share Document