Magnetic properties of C–N planar structures: d0 ferromagnetism and half-metallicity

2015 ◽  
Vol 17 (47) ◽  
pp. 31995-31999 ◽  
Author(s):  
W. H. Brito ◽  
Joice da Silva-Araújo ◽  
H. Chacham

We investigate, from first principles calculations, the magnetic properties of planar carbon nitride structures with the lowest formation energies within twenty eight distinct stoichiometries and porosities.

2014 ◽  
Vol 1015 ◽  
pp. 377-380
Author(s):  
Tao Chen ◽  
Ying Chen ◽  
Yin Zhou ◽  
Hong Chen

Using the first-principles calculations within density functional theory (DFT), we investigated the electronic and magnetic properties of (100) surface of inverse Heusler alloy Mn2CoSb with five different terminations. Our work reveals that the surface Mn atom moves to vacuum while surface Co atom moves to slab. Moreover, duo to the reason that the surface atom lost half of the nearest atoms with respect to the bulk phase, resulting in the decrease of hybridization, the atom-resolved spin magnetic moments of surface atoms are enhanced. Further investigation on DOS and PDOS showed that half-metallicity was preserved only in SbSb-termination while was destroyed in MnCo-, MnSb-, MnMn-, and CoCo-termination due to the appearance of surface states.


2013 ◽  
Vol 27 (15) ◽  
pp. 1362007
Author(s):  
JUN LIU ◽  
SHENG-BIAO TAN ◽  
HUI-NING DONG

The ground state geometric structures of the nanoparticles or clusters CO n(n = 1-6) were given based on the first-principles calculations. Then the magnetic properties of the clusters CO n(n = 1-6) and ( CO n)-2(n = 1-6) were calculated in system. Results show that their ground state structures are closely related to the numbers of O-ions. These clusters have no magnetic moments and half-metallicity if they are electroneutral. However, they have magnetic moments if they have positive or negative charges. The total magnetic moments of the clusters ( CO n)-2(n = 1-6, but n≠3) are all 2.0000 μB, and all their ions have contributions to the total magnetic moments. The main reason is that the molecular orbitals with lower energy filled with paired electrons and the molecular orbitals with higher energy are occupied by two electrons in parallel.


RSC Advances ◽  
2019 ◽  
Vol 9 (63) ◽  
pp. 36680-36689
Author(s):  
M. Ram ◽  
A. Saxena ◽  
Abeer E. Aly ◽  
A. Shankar

The electronic and magnetic properties of Mn2ZnSi(1−x)Gex (x = 0.0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, and 1.0) inverse Heusler alloys and Mn2ZnSi/Mn2ZnGe superlattice have been investigated using first-principles calculations.


2019 ◽  
Vol 9 (4) ◽  
pp. 620 ◽  
Author(s):  
Ying Chen ◽  
Shaobo Chen ◽  
Bin Wang ◽  
Bo Wu ◽  
Haishen Huang ◽  
...  

The effects of doping on the electronic and magnetic properties of the quaternary Heusler alloy TiZrCoIn were investigated by first-principles calculations. Results showed that the appearance of half-metallicity and negative formation energies are associated in all of the TiZrCoIn1−xGex compounds, indicating that Ge doping at Z-site increases the stability without damaging the half-metallicity of the compounds. Formation energy gradually decreased with doping concentration, and the width of the spin-down gap increased with a change in Fermi level. TiZrCoIn0.25Ge0.75 was found to be the most stable half-metal. Its Fermi level was in the middle of the broadened gap, and a peak at the Fermi level was detected in the spin majority channel of the compound. The large gaps of the compounds were primarily dominated by the intense d-d hybridization between Ti, Zr, and Co. The substitution of In by Ge increased the number of sp valence electrons in the system and thereby enhanced RKKY exchange interaction and increased splitting. Moreover, the total spin magnetic moments of the doped compounds followed the Slater–Pauling rule of Mt = Zt − 18 and increased from 2 μB to 3 μB linearly with concentration.


RSC Advances ◽  
2017 ◽  
Vol 7 (50) ◽  
pp. 31707-31713 ◽  
Author(s):  
Y. Li ◽  
G. D. Liu ◽  
X. T. Wang ◽  
E. K. Liu ◽  
X. K. Xi ◽  
...  

Using first-principles calculations based on density-functional theory, the structural, electronic and magnetic properties in the bulk and (001) surfaces of quaternary Heusler compounds NbFeCrAl and NbFeVGe are investigated.


2020 ◽  
Vol 22 (4) ◽  
pp. 2249-2261 ◽  
Author(s):  
Asadollah Bafekry ◽  
Catherine Stampfl ◽  
Berna Akgenc ◽  
Mitra Ghergherehchi

In the present work, the effect of various embedded atom impurities on tuning electronic and magnetic properties of C3N4 and C4N3 nanosheets have been studied using first-principles calculations.


2012 ◽  
Vol 535-537 ◽  
pp. 1295-1298 ◽  
Author(s):  
Ying Chen ◽  
Bo Wu ◽  
Hong Chen

In this work, the electronic and magnetic properties of Nb-doped full-Huesler alloy Ti2NiAl with Hg2CuTi-type structure have been investigated by using first-principles calculations within the density function theory (DFT). Due to the Nb which has less valence electrons than Ni doping into Ni-site, the gap around the Fermi level of the compound Ti2Ni1-xNbxAl (0≤x≤1) is gradually narrowed, and destroyed completely as x≥0.5. With the increase of x, it has gone through the transition from the ferromagnetism to the non-magnetism, and then to the ferromagnetism finally. Further analyses of density of states reveal that the d-electronic rehybridization induced by Nb-doping and RKKY-type indirect interaction is directly responsible for the changes of half-metallicity and magnetism.


Author(s):  
Yanxia Wang ◽  
Xue Jiang ◽  
Yi Wang ◽  
Jijun Zhao

Exploring two-dimensional (2D) ferromagnetic materials with intrinsic Dirac half-metallicity is crucial for the development of next-generation spintronic devices. Based on first-principles calculations, here we propose a simple valence electron-counting rule...


Sign in / Sign up

Export Citation Format

Share Document