Tuneable ultra high specific surface area Mg/Al-CO3layered double hydroxides

2015 ◽  
Vol 44 (37) ◽  
pp. 16392-16398 ◽  
Author(s):  
Chunping Chen ◽  
Aunchana Wangriya ◽  
Jean-Charles Buffet ◽  
Dermot O'Hare

We report the synthesis of tuneable ultra high specific surface area Aqueous Miscible Organic solvent-Layered Double Hydroxides (AMO-LDHs).

2021 ◽  
Vol 23 (4) ◽  
pp. 1616-1620
Author(s):  
W. L. Joyce Kwok ◽  
Hongri Suo ◽  
Chunping Chen ◽  
D. W. Justin Leung ◽  
Jean-Charles Buffet ◽  
...  

An atom economic synthesis of dense porous layered double hydroxides (SLDHs) using an undesirable waste in wastewater treatment plants (struvite) is reported. The obtained SLDHs show high specific surface area, large pore volume and high density.


2020 ◽  
Vol 29 ◽  
pp. 2633366X2092652 ◽  
Author(s):  
Haiyan Li ◽  
Xianping Wang ◽  
Xuemao Guan ◽  
Dinghua Zou

In this study, LiAl-layered double hydroxides Lithium aluminum hydrotalcite (LiAl-LDH) with different specific surface area were prepared by the separate nucleation and aging steps (SNAS) method and then were employed to prepare calcium sulfoaluminate cement-based grouting material (CBGM) paste. The influence of LiAl-LDH slurries on fresh and hardened properties of the CBGM paste was investigated in terms of fluidity, stability, setting time, and compressive strength. Additionally, the hydration process and hydration products of the CBGM paste were characterized by hydration heat, X-ray diffraction, differential thermal analysis–thermogravimetry, and Fourier transform infrared analyses. The acquired results illustrated that LiAl-LDH with larger specific surface area led to a faster hydration rate at early age, a lower fluidity, a shorter setting time, and a higher stability. Furthermore, due to the crystal nucleation effect, the addition of LiAl-LDH slurries did not cause a new phase to form but changed the morphology and increased the amount of hydration products, yielding higher compressive strength.


2022 ◽  
Vol 9 ◽  
Author(s):  
Lumei Chen ◽  
Xiaotong Yang ◽  
Ye Tian ◽  
Yiping Wang ◽  
Xuhui Zhao ◽  
...  

We report the facile preparation of β-Ni(OH)2 particles by etching a NiAl-layered double hydroxides (NiAl-LDHs) precursor with KOH solution. The amphoteric Al3+ ions in LDHs crystal were selectively dissolved out by KOH solution and LDHs crystals were proposed to be in situ topologically transformed to form β-Ni(OH)2. Alkaline concentration has a great influence on the structure, morphology, specific surface area, and porous structure of the resulting samples. Compared to LDHs precursor and β-Ni(OH)2 prepared by a precipitation reaction, the sample etched in 10 M KOH solution has enhanced specific capacitance (829 F/g at 1 A/g), high rate capability (capacitance retention 57.3% with current density 8 A/g), and good charge/discharge stability. We suggested that the high accessible specific surface area and appropriate porous structure, which is conducive to full contact between active material and electrolyte, can improve the utilization rate of the active material to increase the rate capacity of the 10 M KOH-etched sample.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 345 ◽  
Author(s):  
Lianzan Yang ◽  
Yongyan Li ◽  
Zhifeng Wang ◽  
Weimin Zhao ◽  
Chunling Qin

High-entropy alloys (HEAs) present excellent mechanical properties. However, the exploitation of chemical properties of HEAs is far less than that of mechanical properties, which is mainly limited by the low specific surface area of HEAs synthesized by traditional methods. Thus, it is vital to develop new routes to fabricate HEAs with novel three-dimensional structures and a high specific surface area. Herein, we develop a facile approach to fabricate nanoporous noble metal quasi-HEA microspheres by melt-spinning and dealloying. The as-obtained nanoporous Cu30Au23Pt22Pd25 quasi-HEA microspheres present a hierarchical porous structure with a high specific surface area of 69.5 m2/g and a multiphase approximatively componential solid solution characteristic with a broad single-group face-centered cubic XRD pattern, which is different from the traditional single-phase or two-phase solid solution HEAs. To differentiate, these are named quasi-HEAs. The synthetic strategy proposed in this paper opens the door for the synthesis of porous quasi-HEAs related materials, and is expected to promote further applications of quasi-HEAs in various chemical fields.


2021 ◽  
Vol 45 (12) ◽  
pp. 5712-5719
Author(s):  
Yongxiang Zhang ◽  
Peifeng Yu ◽  
Mingtao Zheng ◽  
Yong Xiao ◽  
Hang Hu ◽  
...  

Porous carbons with a high specific surface area (2314–3470 m2 g−1) are prepared via a novel KCl-assisted activation strategy for high-performance supercapacitor.


2021 ◽  
Vol 319 ◽  
pp. 111063
Author(s):  
Yury M. Volfkovich ◽  
Valentin E. Sosenkin ◽  
Alexei Y. Rychagov ◽  
Alexandr V. Melezhik ◽  
Alexei G. Tkachev ◽  
...  

2019 ◽  
Vol 43 (33) ◽  
pp. 13217-13224 ◽  
Author(s):  
Xieyi Huang ◽  
Peng Wang ◽  
Zhichao Zhang ◽  
Shaoning Zhang ◽  
Xianlong Du ◽  
...  

Thin-layer SiOx matrix anchored nickel catalysts with high specific surface area and a unique electronic/geometric structure were fabricated for efficient CO2 methanation.


Sign in / Sign up

Export Citation Format

Share Document