Citrus flavanones prevent systemic inflammation and ameliorate oxidative stress in C57BL/6J mice fed high-fat diet

2016 ◽  
Vol 7 (6) ◽  
pp. 2675-2681 ◽  
Author(s):  
Paula S. Ferreira ◽  
Luis C. Spolidorio ◽  
John A. Manthey ◽  
Thais B. Cesar

In vivoantioxidant and anti-inflammatory effects of citrus flavanones.

Neuropeptides ◽  
2020 ◽  
Vol 82 ◽  
pp. 102047 ◽  
Author(s):  
Napatsorn Saiyasit ◽  
Titikorn Chunchai ◽  
Nattayaporn Apaijai ◽  
Wasana Pratchayasakul ◽  
Jirapas Sripetchwandee ◽  
...  

Author(s):  
ZAFAR JAVED KHAN ◽  
NAEEM AHMAD KHAN

Objective: The aim of the present study was to investigate the in vivo antioxidant potential of 50% ethanolic extract of Sesamum indicum against high-fat diet-induced rats. Methods: Animals were treated with plant extract for 30 d, and a high-fat diet was given to all groups except plain control, throughout, out the study. And alpha-tocopherol acetate (Vit, E) was used as standard. Pre-treatment with 16 mg/100 gm of body weight of 50% ethanolic extract of Sesamum indicum improved the Superoxide dismutase, catalase, glutathione, and lipid peroxidation levels significantly as compared to control group. Results: The present studies revealed that Sesamum indicum has significant in vivo antioxidant activity and can be used to protect tissue from oxidative stress. The result showed that the activities of SOD, catalase, lipid peroxidase, and glutathione, in the group treated with high-fat diet declined significantly than that of normal group. Conclusion: 50% ethanolic extract of in the dose of Sesamum indicum 16 mg/100 gm of body weight, has improved the SOD, catalase, glutathione, and lipid peroxidase levels significantly, which were comparable with high-fat-diet-induced rats. Based on this study we conclude that the 50% ethanolic extract of Sesamum indicum possesses in vivo antioxidant activity and can be employed in protecting tissue from oxidative stress.


2020 ◽  
Author(s):  
Jee-Yon Lee ◽  
Eunsoo Bae ◽  
Hwa Young Kim ◽  
Kang-Mu Lee ◽  
Sang Sun Yoon ◽  
...  

Abstract Background: Obesity is one of the major public health problems related to various chronic health conditions, with steadily increasing prevalence worldwide. Lactobacillus provides various benefits to the host body; however, its role in obesity is unknown. Results: In this study, we found higher colonisation of Lactobacillus sakei species in obesity group, which in turn was related to increased reactive oxygen species (ROS) levels induced by higher fat intake. We isolated L. sakei ob4.1 strain from the faeces of one subject with obesity and compared its genetic and molecular features with those of L. sakei DSM 20017 strain. L. sakei ob4.1 showed higher catalase activity, which was regulated by oxidative stress at gene transcriptional levels. L. sakei ob4.1 maintained colon epithelial cell-adhesion ability under ROS stimulation, and live bacteria could decrease colon epithelial inflammation in a dose-dependent manner. Establishing a mouse model revealed high-fat diet-induced colon ROS to be associated with increased colonisation of L. sakei ob4.1 through catalase activity. Four-week supplementation with this strain could reduce colon inflammation effectively, though not so for body weight or ROS levels in high fat-fed mice. Conclusion: We, therefore, concluded that changes in host gut-oxidative stress levels could link high fat-induced obesity to increased colonisation of L. sakei ob4.1 , and this strain could be potent as anti-inflammatory probiotic in obese population with gut inflammation. Keywords Lactobacillus sakei; Obesity; Gut microbiome; Reactive oxygen stress; Inflammation; High fat diet


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Maryem Ben Salem ◽  
Kamilia Ksouda ◽  
Raouia Dhouibi ◽  
Slim Charfi ◽  
Mouna Turki ◽  
...  

Cynara scolymusL. (Artichoke) has been used for the treatment of metabolic disorders. The purpose of the present study was to investigate the hepatoprotective effect ofCynara scolymusleaves extract against a high fat diet (HFD) induced rats. This study investigated the most abundant phenolic compounds richCynara scolymusleaves extract and it is antihypercholesterolemic and antioxidative effectsin vivo. The hypercaloric high fat diet (HFD) was treated with 200 mg/kg and 400 mg/kg of ethanol extract (EEA) from leaves ofCynaraand atorvastatin (ATOR) (10 mg/kg/day) during an 8-week period. Lipid profile was measured and oxidative stress systematic in hepatic tissue was determined. Our data revealed that HFD-induced hepatic dysfunction manifested by significant abnormal levels of AST, ALT, ALP, LDH, and OCT was accompanied by increasing levels of oxidative stress biomarker (ROS, MDA, and AOPP) while decreasing in antioxidant status. Coadministration of EEA significantly reduced serum lipid profile and hepatic disorders which was confirmed to be histological by reducing the fatty liver deposition in hepatic lobule. These findings suggest thatCynaraleaves exert antiobesity and antioxidant liver effects in HFD-induced obese rats.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 23 ◽  
Author(s):  
Tetiana Halenova ◽  
Igor Zlatskiy ◽  
Anton Syroeshkin ◽  
Tatiana Maximova ◽  
Tatiana Pleteneva

In this study, we present the potential application of deuterium-depleted water (DDW) for the prevention and adjuvant treatment of obesity in rats. We tested the hypothesis that DDW can alleviate diet-induced obesity (DIO) and its associated metabolic impairments. Rats fed a high-fat diet had an increased body weight index (BWI), glucose concentration, and level of certain proinflammatory cytokines; decreased levels of insulin in the serum; decreased tryptophan and serotonin in the brain, and a decreased concentration of some heavy metals in the liver. Drinking DDW at a concentration of 10 ppm deuterium/protium (D/H) ad libitum for 3 weeks restored the BWI, glucose (serum), tryptophan (brain), and serotonin (brain) levels and concentration of Zn in the liver in the DIO animals to those of the controls. The levels of proinflammatory cytokines (IL-1β, IL-6, IFNγ) and anti-inflammatory TNFα were decreased in DIO rats, while anti-inflammatory cytokine (IL-4, IL-10) levels remained at the control levels, which is indicative of a pathophysiological syndrome. In contrast, in groups of rats treated with DDW, a significant increase in anti-inflammatory (IL-4, IL-10) and proinflammatory cytokines (IFNγ) was observed. This finding indicates a reduction in systemic inflammation in obese animals treated with DDW. Similarly, the high-fat diet caused an increased level of oxidative stress products, which was accompanied by decreased activity of both superoxide dismutase and catalase, whereas the administration of DDW decreased the level of oxidative stress and enhanced antioxidant enzyme activities.


Author(s):  
Hyunju Jeong ◽  
Chanju Lee ◽  
Chenyu Cheng ◽  
Hung Chun Chou ◽  
HyeJin Yang ◽  
...  

Abstract Background/objectives Adipose tissue macrophages (ATMs) exist in either the M1 or M2 form. The anti-inflammatory M2 ATMs accumulate in lean individuals, whereas the pro-inflammatory M1 ATMs accumulate in obese individuals. Bee venom phospholipase A2 (bvPLA2), a major component in honeybee (Apis mellifera) venom, exerts potent anti-inflammatory effects via interactions with regulatory T cells (Treg) and macrophages. This study investigated the effects of bvPLA2 on a high-fat diet (HFD)-induced obesity in mice. Subjects/methods For in vivo experiments, male C57BL/6, CD206-deficient, and Treg-depleted mice models were fed either a normal diet 41.86 kJ (ND, 10 kcal% fat) or high-fat diet 251.16 kJ (HFD, 60 kcal% fat). Each group was i.p. injected with PBS or bvPLA2 (0.5 mg/kg) every 3 days for 11 weeks. Body weight and food intake were measured weekly. Histological changes in the white adipose tissue (WAT), liver, and kidney as well as the immune phenotypes of the WAT were examined. Immune cells, cytokines, and lipid profiles were also evaluated. The direct effects of bvPLA2 on 3T3-L1 pre-adipocytes and bone marrow-derived macrophages were measured in vitro. Results bvPLA2 markedly decreased bodyweight in HFD-fed mice. bvPLA2 treatment also decreased lipid accumulation in the liver and reduced kidney inflammation in the mice. It was confirmed that bvPLA2 exerted immunomodulatory effects through the CD206 receptor. In addition, bvPLA2 decreased M1 ATM and alleviated the M1/M2 imbalance in vivo. However, bvPLA2 did not directly inhibit adipogenesis in the 3T3-L1 adipose cells in vitro. Conclusions bvPLA2 is a potential therapeutic strategy for the management of obesity by regulating adipose tissue macrophage homeostasis.


Sign in / Sign up

Export Citation Format

Share Document