Numerical design and optimization of hydraulic resistance and wall shear stress inside pressure-driven microfluidic networks

Lab on a Chip ◽  
2015 ◽  
Vol 15 (21) ◽  
pp. 4187-4196 ◽  
Author(s):  
Hazem Salim Damiri ◽  
Hamzeh Khalid Bardaweel

Control of total wall shear stress in ann-generation microfluidic network.

1982 ◽  
Vol 104 (2) ◽  
pp. 150-155 ◽  
Author(s):  
J. E. McAllister ◽  
F. J. Pierce ◽  
M. H. Tennant

Unique, simultaneous direct measurements of the magnitude and direction of the local wall shear stress in a pressure-driven three-dimensional turbulent boundary layer are presented. The flow is also described with an oil streak wall flow pattern, a map of the wall shear stress-wall pressure gradient orientations, a comparison of the wall shear stress directions relative to the directions of the nearest wall velocity as measured with a typical, small boundary layer directionally sensitive claw probe, as well as limiting wall streamline directions from the oil streak patterns, and a comparison of the freestream streamlines and the wall flow streamlines. A review of corrections for direct force sensing shear meters for two-dimensional flows is presented with a brief discussion of their applicability to three-dimensional devices.


Soft Matter ◽  
2017 ◽  
Vol 13 (36) ◽  
pp. 6189-6196 ◽  
Author(s):  
Tamal Roy ◽  
Kai Szuttor ◽  
Jens Smiatek ◽  
Christian Holm ◽  
Steffen Hardt

Stretching of a surface tethered polymer chain in pressure-driven flow under confinement is governed mainly by the wall shear stress and the chain contour length.


Author(s):  
Brett Freidkes ◽  
David A. Mills ◽  
Casey Keane ◽  
Lawrence S. Ukeiley ◽  
Mark Sheplak

2020 ◽  
Vol 59 (SK) ◽  
pp. SKKE16 ◽  
Author(s):  
Ryo Nagaoka ◽  
Kazuma Ishikawa ◽  
Michiya Mozumi ◽  
Magnus Cinthio ◽  
Hideyuki Hasegawa

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1587
Author(s):  
Dolat Khan ◽  
Ata ur Rahman ◽  
Gohar Ali ◽  
Poom Kumam ◽  
Attapol Kaewkhao ◽  
...  

Due to the importance of wall shear stress effect and dust fluid in daily life fluid problems. This paper aims to discover the influence of wall shear stress on dust fluids of fluctuating flow. The flow is considered between two parallel plates that are non-conducting. Due to the transformation of heat, the fluid flow is generated. We consider every dust particle having spherical uniformly disperse in the base fluid. The perturb solution is obtained by applying the Poincare-Lighthill perturbation technique (PLPT). The fluid velocity and shear stress are discussed for the different parameters like Grashof number, magnetic parameter, radiation parameter, and dusty fluid parameter. Graphical results for fluid and dust particles are plotted through Mathcad-15. The behavior of base fluid and dusty fluid is matching for different embedded parameters.


Sign in / Sign up

Export Citation Format

Share Document