scholarly journals Development of a competitive binding assay for the Burkholderia cenocepacia lectin BC2L-A and structure activity relationship of natural and synthetic inhibitors

MedChemComm ◽  
2016 ◽  
Vol 7 (3) ◽  
pp. 519-530 ◽  
Author(s):  
Ghamdan Beshr ◽  
Roman Sommer ◽  
Dirk Hauck ◽  
David Chan Bodin Siebert ◽  
Anna Hofmann ◽  
...  

Burkholderia cenocepacia is an opportunistic Gram-negative pathogen and especially hazardous for cystic fibrosis patients.

Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2713
Author(s):  
David Barker ◽  
Stephanie Lee ◽  
Kyriakos G. Varnava ◽  
Kevin Sparrow ◽  
Michelle van Rensburg ◽  
...  

In an effort to gain more understanding on the structure activity relationship of pseudoceratidine 1, a di-bromo pyrrole spermidine alkaloid derived from the marine sponge Pseudoceratina purpurea that has been shown to exhibit potent biofouling, anti-fungal, antibacterial, and anti-malarial activities, a large series of 65 compounds that incorporated several aspects of structural variation has been synthesised through an efficient, divergent method that allowed for a number of analogues to be generated from common precursors. Subsequently, all analogues were assessed for their antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. Overall, several compounds exhibited comparable or better activity than that of pseudoceratidine 1, and it was found that this class of compounds is generally more effective against Gram-positive than Gram-negative bacteria. Furthermore, altering several structural features allowed for the establishment of a comprehensive structure activity relationship (SAR), where it was concluded that several structural features are critical for potent anti-bacterial activity, including di-halogenation (preferable bromine, but chlorine is also effective) on the pyrrole ring, two pyrrolic units in the structure and with one or more secondary amines in the chain adjoining these units, with longer chains giving rise to better activities.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
MA Brenzan ◽  
CV Nakamura ◽  
BPD Filho ◽  
T Ueda-Nakamura ◽  
MCM Young ◽  
...  

2019 ◽  
Vol 23 (5) ◽  
pp. 503-516 ◽  
Author(s):  
Qiang Zhang ◽  
Xude Wang ◽  
Liyan Lv ◽  
Guangyue Su ◽  
Yuqing Zhao

Dammarane-type ginsenosides are a class of tetracyclic triterpenoids with the same dammarane skeleton. These compounds have a wide range of pharmaceutical applications for neoplasms, diabetes mellitus and other metabolic syndromes, hyperlipidemia, cardiovascular and cerebrovascular diseases, aging, neurodegenerative disease, bone disease, liver disease, kidney disease, gastrointestinal disease and other conditions. In order to develop new antineoplastic drugs, it is necessary to improve the bioactivity, solubility and bioavailability, and illuminate the mechanism of action of these compounds. A large number of ginsenosides and their derivatives have been separated from certain herbs or synthesized, and tested in various experiments, such as anti-proliferation, induction of apoptosis, cell cycle arrest and cancer-involved signaling pathways. In this review, we have summarized the progress in structural modification, shed light on the structure-activity relationship (SAR), and offered insights into biosynthesis-structural association. This review is expected to provide a preliminary guide for the modification and synthesis of ginsenosides.


Sign in / Sign up

Export Citation Format

Share Document