Chemical vapour deposition of soluble poly(p-xylylene) copolymers with tuneable properties

2016 ◽  
Vol 7 (1) ◽  
pp. 54-62 ◽  
Author(s):  
Ilka E. Paulus ◽  
Markus Heiny ◽  
V. Prasad Shastri ◽  
Andreas Greiner

High-molecular weight poly(p-xylylene) (PPX)/2-hydroxy-ethyl methacrylate (HEMA) copolymers are synthesized by chemical vapour deposition. The copolymer coatings are hydrophilic and show good cytocompatibility.

2019 ◽  
Vol 7 (20) ◽  
pp. 3310-3318 ◽  
Author(s):  
Ke Wu ◽  
Samuel P. Douglas ◽  
Gaowei Wu ◽  
Alexander J. MacRobert ◽  
Elaine Allan ◽  
...  

We report here for the first time how a copper coating bond to ultra-high molecular weight polyethylene (UHMWPE) via low temperature aerosol assisted chemical vapour deposition.


Author(s):  
A Galvin ◽  
C Brockett ◽  
S Williams ◽  
P Hatto ◽  
A Burton ◽  
...  

Alumina ceramic heads have been previously shown to reduce polyethylene wear in comparison to cobalt chrome (CoCr) heads in artificial hip joints. However, there are concerns about the brittle nature of ceramics. It is therefore of interest to investigate ceramic-like coatings on metallic heads. The aim of this study was to compare the friction and wear of ultra-high molecular weight polyethylene (UHMWPE) against alumina ceramic, CoCr, and surface-engineered ceramic-like coatings in a friction simulator and a hip joint simulator. All femoral heads tested were 28 mm diameter and included: Biolox™ Forte alumina, CoCr, arc evaporative physical vapour deposition (AEPVD) chromium nitride (CrN) coated CoCr, plasma-assisted chemical vapour deposition (PACVD) amorphous diamond-like carbon (aDLC) coated CoCr, sputter CrN coated CoCr, reactive gas controlled arc (RGCA) AEPVD titanium nitride (TiN) coated CoCr, and Graphit-iC™ coated CoCr. These were articulated against UHMWPE acetabular cups in a friction simulator and a hip joint simulator. Alumina and CoCr gave the lowest wear volumes whereas the sputter coated CrN gave the highest. Alumina also had the lowest friction factor. There was an association between surface parameters and wear. This study indicates that surface topography of surface-engineered femoral heads is more important than friction and wettability in controlling UHMWPE wear.


1999 ◽  
Vol 09 (PR8) ◽  
pp. Pr8-395-Pr8-402 ◽  
Author(s):  
B. Armas ◽  
M. de Icaza Herrera ◽  
C. Combescure ◽  
F. Sibieude ◽  
D. Thenegal

1999 ◽  
Vol 09 (PR8) ◽  
pp. Pr8-373-Pr8-380 ◽  
Author(s):  
P. Sourdiaucourt ◽  
A. Derré ◽  
P. Delhaès ◽  
P. David

2020 ◽  
Author(s):  
Polla Rouf ◽  
Pitsiri Sukkaew ◽  
Lars Ojamäe ◽  
Henrik Pedersen

<p>Aluminium nitride (AlN) is a semiconductor with a wide range of applications from light emitting diodes to high frequency transistors. Electronic grade AlN is routinely deposited at 1000 °C by chemical vapour deposition (CVD) using trimethylaluminium (TMA) and NH<sub>3</sub> while low temperature CVD routes to high quality AlN are scarce and suffer from high levels of carbon impurities in the film. We report on an ALD-like CVD approach with time-resolved precursor supply where thermally induced desorption of methyl groups from the AlN surface is enhanced by the addition of an extra pulse, H<sub>2</sub>, N<sub>2</sub> or Ar between the TMA and NH<sub>3</sub> pulses. The enhanced desorption allowed deposition of AlN films with carbon content of 1 at. % at 480 °C. Kinetic- and quantum chemical modelling suggest that the extra pulse between TMA and NH<sub>3</sub> prevents re-adsorption of desorbing methyl groups terminating the AlN surface after the TMA pulse. </p>


Sign in / Sign up

Export Citation Format

Share Document