scholarly journals Novel biodegradable poly(propylene fumarate)-co-poly(l-lactic acid) porous scaffolds fabricated by phase separation for tissue engineering applications

RSC Advances ◽  
2015 ◽  
Vol 5 (27) ◽  
pp. 21301-21309 ◽  
Author(s):  
Xifeng Liu ◽  
A. Lee Miller II ◽  
Brian E. Waletzki ◽  
Michael J. Yaszemski ◽  
Lichun Lu

Three-dimensional polymer scaffolds with interconnected porous structures were fabricated by thermally induced phase separation of novel biodegradable poly(propylene fumarate)-co-poly(l-lactic acid).

2021 ◽  
Vol 22 (7) ◽  
pp. 3504
Author(s):  
Reza Zeinali ◽  
Luis J. del Valle ◽  
Joan Torras ◽  
Jordi Puiggalí

Porous biodegradable scaffolds provide a physical substrate for cells allowing them to attach, proliferate and guide the formation of new tissues. A variety of techniques have been developed to fabricate tissue engineering (TE) scaffolds, among them the most relevant is the thermally-induced phase separation (TIPS). This technique has been widely used in recent years to fabricate three-dimensional (3D) TE scaffolds. Low production cost, simple experimental procedure and easy processability together with the capability to produce highly porous scaffolds with controllable architecture justify the popularity of TIPS. This paper provides a general overview of the TIPS methodology applied for the preparation of 3D porous TE scaffolds. The recent advances in the fabrication of porous scaffolds through this technique, in terms of technology and material selection, have been reviewed. In addition, how properties can be effectively modified to serve as ideal substrates for specific target cells has been specifically addressed. Additionally, examples are offered with respect to changes of TIPS procedure parameters, the combination of TIPS with other techniques and innovations in polymer or filler selection.


2011 ◽  
Vol 309-310 (1) ◽  
pp. 76-83 ◽  
Author(s):  
Karola Luetzow ◽  
Thomas Weigel ◽  
Michael Schossig ◽  
Karl Kratz ◽  
Andreas Lendlein

2018 ◽  
Vol 33 (4) ◽  
pp. 397-415 ◽  
Author(s):  
Harish Chinnasami ◽  
Jeff Gimble ◽  
Ram V Devireddy

Thermally induced phase separation method was used to make porous three-dimensional poly (l-lactic acid) scaffolds. The effect of imposed thermal profile during freezing of the poly (l-lactic acid) in dioxane solution on the scaffold was characterized by their micro-structure, porosity (%), pore sizes’ distribution, and mechanical strength. The porosity (%) decreased considerably with increasing concentrations of poly (l-lactic acid) in the solution, while a decreasing trend was observed with increasing cooling rates. The mechanical strength increases with increase in poly (l-lactic acid) concentration and also with increase in the cooling rate for both types of solvents. Therefore, mechanical strength was increased by higher cooling rates while the porosity (%) remained relatively consistent. Scaffolds made using higher concentrations of poly (l-lactic acid; 7% and 10% w/v) in solvent showed better mechanical strength which improved relatively with increasing cooling rates (1°C–40°C/min). This phenomenon of enhanced structural integrity with increasing cooling rates was more prominent in scaffolds made from higher initial poly (l-lactic acid) concentrations. Human adipose–derived stem cells were cultured on these scaffold (7% and 10% w/v) prepared by thermally induced phase separation at all cooling rates to measure the cell proliferation efficiency as a function of their micro-structural properties. Mean pore sizes played a crucial role in cell proliferation than percent porosity since all scaffolds were >88% porous. The viability percent of human adipose tissue–derived adult stem cells increased consistently with longer periods of culture. Thus, poly (l-lactic acid) scaffolds prepared by thermally controlled thermally induced phase separation method could be a prime candidate for making ex vivo tissue-engineered grafts for surgical implantation.


2019 ◽  
Vol 822 ◽  
pp. 277-283
Author(s):  
Mariia Stepanova ◽  
Aleksei Eremin ◽  
Ilia Averianov ◽  
Iosif Gofman ◽  
Antonina Lavrentieva ◽  
...  

Supermacroporous three-dimensional matrices based on poly-D,L-lactide or polycaprolactone were fabricated by thermally induced phase separation method and 3D printing technique. The morphology and mechanical properties of the resulting matrices were studied with the use of optical and scanning electron microscopy and the uniaxial compression test, respectively. All matrices were characterized with supermacroporous structure suitable for cell penetration. A significant increase in Young's modulus and tensile strength was established for both polymer matrices prepared by 3D printing technique.


2006 ◽  
Vol 291 (2) ◽  
pp. 155-161 ◽  
Author(s):  
Wilfredo Yave ◽  
Raúl Quijada ◽  
Douglas R. Lloyd ◽  
María L. Cerrada ◽  
Rosario Benavente ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document