Synthesis of SBA-15 encapsulated ammonium molybdophosphate using Qaidam natural clay and its use in cesium ion adsorption

RSC Advances ◽  
2015 ◽  
Vol 5 (45) ◽  
pp. 35453-35460 ◽  
Author(s):  
Chunyan Sun ◽  
Feng Zhang ◽  
Shengfang Li ◽  
Fangqin Cheng

The ordered hexagonal mesoporous silica (SBA-15) encapsulated ammonium molybdophosphate (AMP) was successfully synthesized using low-grade natural clay from Qaidam Basin as silica and aluminum source, through a one-pot synthesis method.

Author(s):  
Pei Chen ◽  
Zean Xie ◽  
Zhen Zhao ◽  
Jianmei Li ◽  
Bonan Liu ◽  
...  

A series of molybdenum-incorporated mesoporous silica (Mo-KIT-6) catalysts were successfully synthesized by a one-pot hydrothermal synthesis method and were applied in the selective oxidation of methane to formaldehyde using oxygen...


Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 901
Author(s):  
Xinnan Lu ◽  
Roxanne Clément ◽  
Yong Lu ◽  
Belén Albela ◽  
R. Tom Baker ◽  
...  

The development of selective and robust heterogeneous oxidation catalysts is an enabling technology for conversion of biomass-derived platform chemicals. Vanadium active sites were incorporated into the structure of mesoporous silica via an ultra-fast, one-pot synthesis method based on microwave-assisted heating. In addition, Al/Ti/Zr/Ce anchoring ions were introduced in order to minimize vanadium leaching and better control its dispersion. The supported V-(Al/Ti/Zr/Ce)-MCM-41 composite materials were assessed as catalysts for aerobic C–C bond cleavage of simple models for lignin (1,2-diphenyl-2-methoxyethanol) and sugar-derived polyalcohols (meso-hydrobenzoin). The TiIV ions proved to be the best anchors to prevent V leaching, while AlIII and ZrIV ions were the best to improve selective conversion of the substrates. The active sites in these catalysts are shown to be 2D VOx layers stabilized on the anchors. In a screen of twelve solvents, weakly polar solvents like toluene were found to be most suitable for this reaction, as was environmentally friendly ethyl acetate. The above properties, together with the high selectivity for C–C bond cleavage, advocate for a heterogeneous catalytic pathway, intrinsically different from that reported previously for molecular oxovanadium (V) catalysts.


2020 ◽  
Vol 37 (12) ◽  
pp. 2317-2325
Author(s):  
Seong Bin Jo ◽  
Ho Jin Chae ◽  
Tae Young Kim ◽  
Jeom-In Baek ◽  
Dhanusuraman Ragupathy ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 661
Author(s):  
Zhiwei Ying ◽  
Xinwei Chen ◽  
He Li ◽  
Xinqi Liu ◽  
Chi Zhang ◽  
...  

Soybean dreg is a by-product of soybean products production, with a large consumption in China. Low utilization value leads to random discarding, which is one of the important sources of urban pollution. In this work, porous biochar was synthesized using a one-pot method and potassium bicarbonate (KHCO3) with low-cost soybean dreg (SD) powder as the carbon precursor to investigating the adsorption of methylene blue (MB). The prepared samples were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analyzer (EA), Brunauer-Emmett-Teller (BET), X-ray diffractometer (XRD), Raman spectroscopy (Raman), Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectroscopy (XPS). The obtained SDB-K-3 showed a high specific surface area of 1620 m2 g−1, a large pore volume of 0.7509 cm3 g−1, and an average pore diameter of 1.859 nm. The results indicated that the maximum adsorption capacity of SDB-K-3 to MB could reach 1273.51 mg g−1 at 318 K. The kinetic data were most consistent with the pseudo-second-order model and the adsorption behavior was more suitable for the Langmuir isotherm equation. This study demonstrated that the porous biochar adsorbent can be prepared from soybean dreg by high value utilization, and it could hold significant potential for dye wastewater treatment in the future.


Author(s):  
Bolla Srinivasarao ◽  
Yogita Y ◽  
Dhana Lakshmi Darsi ◽  
Krishna Kumari Pamula ◽  
N. Lingaiah

One pot conversion of furfural to -valerolactone by transfer hydrogenation has been achieved over bifunctional Zr and TPA located in mesoporous silica catalysts. Different catalysts with TPA and ZrO2 located...


Sign in / Sign up

Export Citation Format

Share Document