Folate-conjugated nanodiamond for tumor-targeted drug delivery

RSC Advances ◽  
2015 ◽  
Vol 5 (101) ◽  
pp. 82711-82716 ◽  
Author(s):  
Yu Dong ◽  
Ruixia Cao ◽  
Yingqi Li ◽  
Zhiqin Wang ◽  
Lin Li ◽  
...  

Relying on the role of folate and folate receptors, NPFD nanoparticles tend to selectively discriminate tumor cells from normal cells and enter the cells by clathrin-dependent and receptor-mediated endocytosis.

2019 ◽  
Vol 24 (44) ◽  
pp. 5296-5312 ◽  
Author(s):  
Fakhara Sabir ◽  
Rai K. Farooq ◽  
Asim.ur.Rehman ◽  
Naveed Ahmed

Monocytes are leading component of the mononuclear phagocytic system that play a key role in phagocytosis and removal of several kinds of microbes from the body. Monocytes are bone marrow precursor cells that stay in the blood for a few days and migrate towards tissues where they differentiate into macrophages. Monocytes can be used as a carrier for delivery of active agents into tissues, where other carriers have no significant access. Targeting monocytes is possible both through passive and active targeting, the former one is simply achieved by enhanced permeation and retention effect while the later one by attachment of ligands on the surface of the lipid-based particulate system. Monocytes have many receptors e.g., mannose, scavenger, integrins, cluster of differentiation 14 (CD14) and cluster of differentiation 36 (CD36). The ligands used against these receptors are peptides, lectins, antibodies, glycolipids, and glycoproteins. This review encloses extensive introduction of monocytes as a suitable carrier system for drug delivery, the design of lipid-based carrier system, possible ways for delivery of therapeutics to monocytes, and the role of monocytes in the treatment of life compromising diseases such as cancer, inflammation, stroke, etc.


2017 ◽  
Vol 10 (04) ◽  
pp. 1750056 ◽  
Author(s):  
Aziz Belmiloudi

In this paper, we present a mathematical model that describes tumor-normal cells interaction dynamics focusing on role of drugs in treatment of brain tumors. The goal is to predict distribution and necessary quantity of drugs delivered in drug-therapy by using optimal control framework. The model describes interactions of tumor and normal cells using a system of reactions–diffusion equations involving the drug concentration, tumor cells and normal tissues. The control estimates simultaneously blood perfusion rate, reabsorption rate of drug and drug dosage administered, which affect the effects of brain tumor chemotherapy. First, we develop mathematical framework which models the competition between tumor and normal cells under chemotherapy constraints. Then, existence, uniqueness and regularity of solution of state equations are proved as well as stability results. Afterwards, optimal control problems are formulated in order to minimize the drug delivery and tumor cell burden in different situations. We show existence and uniqueness of optimal solution, and we derive necessary conditions for optimality. Finally, to solve numerically optimal control and optimization problems, we propose and investigate an adjoint multiple-relaxation-time lattice Boltzmann method for a general nonlinear coupled anisotropic convection–diffusion system (which includes the developed model for brain tumor targeted drug delivery system).


Hepatology ◽  
1985 ◽  
Vol 5 (5) ◽  
pp. 899-901 ◽  
Author(s):  
Robert J. Fallon ◽  
Alan L. Schwartz

RSC Advances ◽  
2015 ◽  
Vol 5 (57) ◽  
pp. 46218-46228 ◽  
Author(s):  
Victor Pan ◽  
Preethi N. Siva ◽  
Christa L. Modery-Pawlowski ◽  
Ujjal Didar Singh Sekhon ◽  
Anirban Sen Gupta

Pro-metastatic tumor cells in circulation interact with active platelets that mediate various mechanisms of hematologic metastasis. Elucidating and utilizing these interactions on delivery vehicles can provide unique ways of metastasis-targeted drug delivery.


RSC Advances ◽  
2016 ◽  
Vol 6 (73) ◽  
pp. 69083-69093 ◽  
Author(s):  
Jin-Long Wu ◽  
Xiao-Yan He ◽  
Pei-Yuan Jiang ◽  
Meng-Qing Gong ◽  
Ren-Xi Zhuo ◽  
...  

A tumor targeted nano-sized self-assembled drug delivery system could efficiently co-deliver an anti-cancer drug and a drug resistance inhibitor to tumor cells and achieve an improved therapeutic efficiency through inhibition of P-gp function.


2020 ◽  
Vol 66 (6) ◽  
pp. 464-468
Author(s):  
L.V. Kostryukova ◽  
Y.A. Tereshkina ◽  
E.I. Korotkevich ◽  
V.N. Prozorovsky ◽  
T.I. Torkhovskaya ◽  
...  

Doxorubicin is one of the widely known and frequently used chemotherapy drugs for the treatment of various types of cancer, the use of which is difficult due to its high cardiotoxicity. Targeted drug delivery systems are being developed to reduce side effects. One of the promising components as vector molecules (ligands) are NGR-containing peptides that are affinity for the CD13 receptor, which is expressed on the surface of many tumor cells and tumor blood vessels. Previously, a method was developed for preparing a composition of doxorubicin embedded in phospholipid nanoparticles with a targeted fragment in the form of an ultrafine emulsion. The resulting composition was characterized by a small particle size (less than 40 nm) and a high degree of incorporation of doxorubicin (about 93%) into transport nanoparticles. When assessing the penetrating ability and the degree of binding to the surface of fibrosarcoma cells (HT-1080), it was shown that when the composition with the targeted fragment was added to the cells, the level of doxorubicin was almost 2 times higher than that of the liposomal form of doxorubicin, i.e. the drug in the system with the targeted peptide penetrated the cell better. At the same time, on the control line of breast adenocarcinoma cells (MCF-7), which do not express the CD13 receptor on the surface, there was not significant difference in the level of doxorubicin in the cells. The data obtained allow us to draw preliminary conclusions about the prospects of targeted delivery of doxorubicin to tumor cells when using a peptide conjugate containing an NGR motif and the further need for its comprehensive study.


Sign in / Sign up

Export Citation Format

Share Document