Biotinylated carboxymethyl chitosan/CaCO3 hybrid nanoparticles for targeted drug delivery to overcome tumor drug resistance

RSC Advances ◽  
2016 ◽  
Vol 6 (73) ◽  
pp. 69083-69093 ◽  
Author(s):  
Jin-Long Wu ◽  
Xiao-Yan He ◽  
Pei-Yuan Jiang ◽  
Meng-Qing Gong ◽  
Ren-Xi Zhuo ◽  
...  

A tumor targeted nano-sized self-assembled drug delivery system could efficiently co-deliver an anti-cancer drug and a drug resistance inhibitor to tumor cells and achieve an improved therapeutic efficiency through inhibition of P-gp function.

2017 ◽  
Vol 41 (4) ◽  
pp. 1518-1525 ◽  
Author(s):  
Shao-Qi Zeng ◽  
Yi-Zhen Chen ◽  
Yong Chen ◽  
Hong Liu

Co-delivery of a chemotherapeutic drug and a drug resistance inhibitor by lipid–polymer hybrid nanoparticles can effectively overcome tumor drug resistance.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 59
Author(s):  
Abeer M. Beagan ◽  
Ahlam A. Alghamdi ◽  
Shatha S. Lahmadi ◽  
Majed A. Halwani ◽  
Mohammed S. Almeataq ◽  
...  

Currently, chemotherapy is an important method for the treatment of various cancers. Nevertheless, it has many limitations, such as poor tumour selectivity and multi-drug resistance. It is necessary to improve this treatment method by incorporating a targeted drug delivery system aimed to reduce side effects and drug resistance. The present work aims to develop pH-sensitive nanocarriers containing magnetic mesoporous silica nanoparticles (MMSNs) coated with pH-responsive polymers for tumour-targeted drug delivery via the folate receptor. 2-Diethyl amino ethyl methacrylate (DEAEMA) was successfully grafted on MMSNs via surface initiated ARGET atom transfer radical polymerization (ATRP), with an average particle size of 180 nm. The end groups of poly (2-(diethylamino)ethyl methacrylate) (PDEAEMA) brushes were converted to amines, followed by a covalent bond with folic acid (FA) as a targeting agent. FA conjugated to the nanoparticle surface was confirmed by X-ray photoelectron spectroscopy (XPS). pH-Responsive behavior of PDEAEMA brushes was investigated by Dynamic Light Scattering (DLS). The nanoparticles average diameters ranged from ca. 350 nm in basic media to ca. 650 in acidic solution. Multifunctional pH-sensitive magnetic mesoporous nanoparticles were loaded with an anti-cancer drug (Doxorubicin) to investigate their capacity and long-circulation time. In a cumulative release pattern, doxorubicin (DOX) release from nano-systems was ca. 20% when the particle exposed to acidic media, compared to ca. 5% in basic media. The nano-systems have excellent biocompatibility and are minimally toxic when exposed to MCF-7, and -MCF-7 ADR cells.


RSC Advances ◽  
2015 ◽  
Vol 5 (57) ◽  
pp. 46218-46228 ◽  
Author(s):  
Victor Pan ◽  
Preethi N. Siva ◽  
Christa L. Modery-Pawlowski ◽  
Ujjal Didar Singh Sekhon ◽  
Anirban Sen Gupta

Pro-metastatic tumor cells in circulation interact with active platelets that mediate various mechanisms of hematologic metastasis. Elucidating and utilizing these interactions on delivery vehicles can provide unique ways of metastasis-targeted drug delivery.


2020 ◽  
Vol 66 (6) ◽  
pp. 464-468
Author(s):  
L.V. Kostryukova ◽  
Y.A. Tereshkina ◽  
E.I. Korotkevich ◽  
V.N. Prozorovsky ◽  
T.I. Torkhovskaya ◽  
...  

Doxorubicin is one of the widely known and frequently used chemotherapy drugs for the treatment of various types of cancer, the use of which is difficult due to its high cardiotoxicity. Targeted drug delivery systems are being developed to reduce side effects. One of the promising components as vector molecules (ligands) are NGR-containing peptides that are affinity for the CD13 receptor, which is expressed on the surface of many tumor cells and tumor blood vessels. Previously, a method was developed for preparing a composition of doxorubicin embedded in phospholipid nanoparticles with a targeted fragment in the form of an ultrafine emulsion. The resulting composition was characterized by a small particle size (less than 40 nm) and a high degree of incorporation of doxorubicin (about 93%) into transport nanoparticles. When assessing the penetrating ability and the degree of binding to the surface of fibrosarcoma cells (HT-1080), it was shown that when the composition with the targeted fragment was added to the cells, the level of doxorubicin was almost 2 times higher than that of the liposomal form of doxorubicin, i.e. the drug in the system with the targeted peptide penetrated the cell better. At the same time, on the control line of breast adenocarcinoma cells (MCF-7), which do not express the CD13 receptor on the surface, there was not significant difference in the level of doxorubicin in the cells. The data obtained allow us to draw preliminary conclusions about the prospects of targeted delivery of doxorubicin to tumor cells when using a peptide conjugate containing an NGR motif and the further need for its comprehensive study.


RSC Advances ◽  
2015 ◽  
Vol 5 (101) ◽  
pp. 82711-82716 ◽  
Author(s):  
Yu Dong ◽  
Ruixia Cao ◽  
Yingqi Li ◽  
Zhiqin Wang ◽  
Lin Li ◽  
...  

Relying on the role of folate and folate receptors, NPFD nanoparticles tend to selectively discriminate tumor cells from normal cells and enter the cells by clathrin-dependent and receptor-mediated endocytosis.


2011 ◽  
Vol 409 ◽  
pp. 175-180 ◽  
Author(s):  
Elena Maria Varoni ◽  
Michele Iafisco ◽  
Lia Rimondini ◽  
Maria Prat

Together with cancer biomarker advance, nanotechnology could lead to a “personalized oncology”, where early tumour detection and diagnosis are more and more specific. A nanosized drug delivery system is mainly composed of three fundamental elements: i) a drug nanocarrier (1-100 nm), ii) an anti-cancer drug; iii) an active targeting molecule, recognizing a tumour associated marker expressed at the cell surface. In our study we used: i) hydroxyapatite nanocrystals (HA-NC), for its properties of large specific surface area, hydrophilicity and biodegradability with very low toxicity and ii) monoclonal antibodies (mAb), directed against CAR-3, a mucin tumour associated surface antigen, and against the Met/HGF-R, both of which are overexpressed on human carcinomas. In our study, nanosized HA-NC, poorly aggregating and biomimetic, were synthetised and characterized. After a preliminary isothermal adsorption of human polyclonal IgG, we functionalized HA-NC, coated or not with protein A (Prot A), with the two mAbs. IgG and Prot A isothermal adsorption curves were obtained; mAb absorption was achieved and prelimary Prot A coating appeared not to improve HA-NC loading capacity. IgG conformation onto HA-NC was investigated by means of Fourier Transformed InfraRed Spectroscopy, revealing a preferential binding with the constant antibody domain, and exposition of the variable domain, involved in antigen binding, on the biomaterial surface. These immunocomplexes are confirmed to be potentially used as targeted drug delivery system.


2017 ◽  
Vol 9 (33) ◽  
pp. 27441-27452 ◽  
Author(s):  
Jie Wang ◽  
Wei Li ◽  
Leicheng Zhang ◽  
Lin Ban ◽  
Peng Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document