Development of porous and antimicrobial CTS–PEG–HAP–ZnO nano-composites for bone tissue engineering

RSC Advances ◽  
2015 ◽  
Vol 5 (120) ◽  
pp. 99385-99393 ◽  
Author(s):  
Arundhati Bhowmick ◽  
Nilkamal Pramanik ◽  
Piyali Jana Manna ◽  
Tapas Mitra ◽  
Thirupathi Kumara Raja Selvaraj ◽  
...  

We have developed porous, antimicrobial, biodegradable, and pH and blood compatible CTS–PEG–HAP–ZnO nanocomposites having good mechanical properties and osteoblast cell proliferation abilities to mimic cancellous bone in bone tissue engineering.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Xiongfeng Tang ◽  
Yanguo Qin ◽  
Xinyu Xu ◽  
Deming Guo ◽  
Wenli Ye ◽  
...  

For bone tissue engineering, the porous scaffold should provide a biocompatible environment for cell adhesion, proliferation, and differentiation and match the mechanical properties of native bone tissue. In this work, we fabricated porous polyetherimide (PEI) scaffolds using a three-dimensional (3D) printing system, and the pore size was set as 800 μm. The morphology of 3D PEI scaffolds was characterized by the scanning electron microscope. To investigate the mechanical properties of the 3D PEI scaffold, the compressive mechanical test was performed via an electronic universal testing system. For the in vitro cell experiment, bone marrow stromal cells (BMSCs) were cultured on the surface of the 3D PEI scaffold and PEI slice, and cytotoxicity, cell adhesion, and cell proliferation were detected to verify their biocompatibility. Besides, the alkaline phosphatase staining and Alizarin Red staining were performed on the BMSCs of different samples to evaluate the osteogenic differentiation. Through these studies, we found that the 3D PEI scaffold showed an interconnected porous structure, which was consistent with the design. The elastic modulus of the 3D PEI scaffold (941.33 ± 65.26 MPa) falls in the range of modulus for the native cancellous bone. Moreover, the cell proliferation and morphology on the 3D PEI scaffold were better than those on the PEI slice, which revealed that the porous scaffold has good biocompatibility and that no toxic substances were produced during the progress of high-temperature 3D printing. The osteogenic differentiation level of the 3D PEI scaffold and PEI slice was equal and ordinary. All of these results suggest the 3D printed PEI scaffold would be a potential strategy for bone tissue engineering.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1319
Author(s):  
Muhammad Umar Aslam Khan ◽  
Wafa Shamsan Al-Arjan ◽  
Mona Saad Binkadem ◽  
Hassan Mehboob ◽  
Adnan Haider ◽  
...  

Bone tissue engineering is an advanced field for treatment of fractured bones to restore/regulate biological functions. Biopolymeric/bioceramic-based hybrid nanocomposite scaffolds are potential biomaterials for bone tissue because of biodegradable and biocompatible characteristics. We report synthesis of nanocomposite based on acrylic acid (AAc)/guar gum (GG), nano-hydroxyapatite (HAp NPs), titanium nanoparticles (TiO2 NPs), and optimum graphene oxide (GO) amount via free radical polymerization method. Porous scaffolds were fabricated through freeze-drying technique and coated with silver sulphadiazine. Different techniques were used to investigate functional group, crystal structural properties, morphology/elemental properties, porosity, and mechanical properties of fabricated scaffolds. Results show that increasing amount of TiO2 in combination with optimized GO has improved physicochemical and microstructural properties, mechanical properties (compressive strength (2.96 to 13.31 MPa) and Young’s modulus (39.56 to 300.81 MPa)), and porous properties (pore size (256.11 to 107.42 μm) and porosity (79.97 to 44.32%)). After 150 min, silver sulfadiazine release was found to be ~94.1%. In vitro assay of scaffolds also exhibited promising results against mouse pre-osteoblast (MC3T3-E1) cell lines. Hence, these fabricated scaffolds would be potential biomaterials for bone tissue engineering in biomedical engineering.


2005 ◽  
Vol 898 ◽  
Author(s):  
Devendra Verma ◽  
Rahul Bhowmik ◽  
Bedabibhas Mohanty ◽  
Dinesh R Katti ◽  
Kalpana S Katti

AbstractInterfaces play an important role in controlling the mechanical properties of composites. Optimum mechanical strength of scaffolds is of prime importance for bone tissue engineering. In the present work, molecular dynamics simulations and experimental studies have been conducted to study effect of interfacial interactions on mechanical properties of composites for bone replacement. In order to mimic biological processes, hydroxyapatite (HAP) is mineralized in presence of polyacrylic acid (PAAc) (in situ HAP). Further, solid and porous composites of in situ HAP with polycaprolactone (PCL) are made. Mechanical tests of composites of in situ HAP with PAAc have shown improved strain recovery, higher modulus/density ratio and also improved mechanical response in simulated body fluid (SBF). Simulation studies indicate potential for calcium bridging between –COO− of PAAc and surface calcium of HAP. This fact is also supported by infrared spectroscopic studies. PAAc modified surfaces of in situ HAP offer means to control the microstructure and mechanical response of porous composites. Nanoindentation experiments indicate that apatite grown on in situ HAP/PCL composites from SBF has improved elastic modulus and hardness. This work gives insight into the interfacial mechanisms responsible for mechanical response as well as bioactivity in biomaterials.


2015 ◽  
Vol 3 (23) ◽  
pp. 4679-4689 ◽  
Author(s):  
Ya-Ping Guo ◽  
Jun-Jie Guan ◽  
Jun Yang ◽  
Yang Wang ◽  
Chang-Qing Zhang ◽  
...  

A bioinspired strategy has been developed to fabricate a hybrid nanostructured hydroxyapatite–chitosan composite scaffold for bone tissue engineering.


2022 ◽  
Author(s):  
Ting Song ◽  
Jianhua Zhou ◽  
Ming Shi ◽  
Liuyang Xuan ◽  
Huamin Jiang ◽  
...  

Scaffold microstructure is important for bone tissue engineering. Failure to synergistically imitate the hierarchical microstructure of bone component, such as osteon with concentric multilayers assembled by nanofibers, hindered the performance...


2016 ◽  
Vol 30 (10) ◽  
pp. 1545-1551 ◽  
Author(s):  
Xuejun Wang ◽  
Tao Lou ◽  
Wenhua Zhao ◽  
Guojun Song ◽  
Chunyao Li ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yong-Seok Jang ◽  
Phonelavanh Manivong ◽  
Yu-Kyoung Kim ◽  
Kyung-Seon Kim ◽  
Sook-Jeong Lee ◽  
...  

Beta-tricalcium phosphate bioceramics are widely used as bone replacement scaffolds in bone tissue engineering. The purpose of this study is to develop beta-tricalcium phosphate scaffold with the optimum mechanical properties and porosity and to identify the effect of N-acetyl-L-cysteine loaded to beta-tricalcium phosphate scaffold on the enhancement of biocompatibility. The various interconnected porous scaffolds were fabricated using slurries containing various concentrations of beta-tricalcium phosphate and different coating times by replica method using polyurethane foam as a passing material. It was confirmed that the scaffold of 40 w/v% beta-tricalcium phosphate with three coating times had optimum microstructure and mechanical properties for bone tissue engineering application. The various concentration of N-acetyl-L-cysteine was loaded on 40 w/v% beta-tricalcium phosphate scaffold. Scaffold group loaded 5 mM N-acetyl-L-cysteine showed the best viability of MC3T3-E1 preosteoblastic cells in the water-soluble tetrazolium salt assay test.


Sign in / Sign up

Export Citation Format

Share Document