The effect of fiber size and pore size on cell proliferation and infiltration in PLLA scaffolds on bone tissue engineering

2016 ◽  
Vol 30 (10) ◽  
pp. 1545-1551 ◽  
Author(s):  
Xuejun Wang ◽  
Tao Lou ◽  
Wenhua Zhao ◽  
Guojun Song ◽  
Chunyao Li ◽  
...  
2022 ◽  
Author(s):  
Ting Song ◽  
Jianhua Zhou ◽  
Ming Shi ◽  
Liuyang Xuan ◽  
Huamin Jiang ◽  
...  

Scaffold microstructure is important for bone tissue engineering. Failure to synergistically imitate the hierarchical microstructure of bone component, such as osteon with concentric multilayers assembled by nanofibers, hindered the performance...


Author(s):  
Bingbing Li ◽  
Bani Davod Hesar ◽  
Yiwen Zhao ◽  
Li Ding

Pore size, external shape, and internal complexity of additively manufactured porous titanium scaffolds are three primary determinants of cell viability and structural strength of scaffolds in bone tissue engineering. To obtain an optimal design with the combination of all three determinants, four scaffolds each with a unique topology (external geometry and internal structure) were designed and varied the pore sizes of each scaffold 3 times. For each topology, scaffolds with pore sizes of 300, 400, and 500 µm were designed. All designed scaffolds were additively manufactured in material Ti6Al4V by the direct metal laser melting machine. Compression test was conducted on the scaffolds to assure meeting minimum compressive strength of human bone. The effects of pore size and topology on the cell viability of the scaffolds were analyzed. The 12 scaffolds were ultrasonically cleaned and seeded with NIH3T3 cells. Each scaffold was seeded with 1 million cells. After 32 days of culturing, the cells were fixed for their three-dimensional architecture preservation and to obtain scanning electron microscope images.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Jiaqi Zhu ◽  
Zhiping Qi ◽  
Changjun Zheng ◽  
Pan Xue ◽  
Chuan Fu ◽  
...  

Bone tissue engineering scaffold provides an effective treatment for bone defect repair. Biodegradable bone scaffold made of various synthetic and natural materials can be used as bone substitutes and grafts for defect site, which has great potential to support bone regeneration. Regulation of cell-scaffold material interactions is an important factor for modulating the cellular activity in bone tissue engineering scaffold applications. Thus, the hydrophilic, mechanical, and chemical properties of scaffold materials directly affect the results of bone regeneration and functional recovery. In this study, a poly-L-lysine (PLL) surface-modified poly(lactic-co-glycolic acid) (PLGA)/graphene oxide (GO) (PLL-PLGA/GO) hybrid fiber matrix was fabricated for bone tissue regeneration. Characterization of the resultant hybrid fiber matrices was done using scanning electron microscopy (SEM), contact angle, and a material testing machine. According to the results obtained from the test above, the PLL-PLGA/GO hybrid fiber matrices exhibited high wettability and mechanical strength. The special surface characteristics of PLL-PLGA/GO hybrid fiber matrices were more beneficial for protein adsorption and inhibit the proliferation of pathogens. Moreover, the enhanced regulation of MC3T3-E1 cell proliferation and differentiation was observed, when the resultant hybrid fiber matrices were combined with electrical stimulation (ES). The cellular response of MC3T3-E1 cells including cell adhesion, proliferation, alkaline phosphatase (ALP) activity, calcium deposition, and osteogenesis-related gene expression was significantly enhanced with the synergistic effect of resultant hybrid fiber matrices and ES. These data indicate that the PLL-PLGA/GO hybrid fiber matrices supported the cellular response in terms of cell proliferation and osteogenesis differentiation in the presence of electrical stimulation, which could be a potential treatment for bone defect.


2016 ◽  
Vol 705 ◽  
pp. 297-303
Author(s):  
Shirin Ibrahim ◽  
Syazana Abu Bakar ◽  
Mohamad Azmirruddin Ahmad ◽  
Nurul Awanis Johan ◽  
Siti Farhana Hisham ◽  
...  

Osteogenesis and degradability of bioresorbable biphasic gypsum-carbonated apatite granules (BPG) were investigated. Three different sizes of gypsum, 300-600 μm (small), 600-1000 μm (medium) and 1000-2000 μm (large), denoted as S, M and L respectively, were developed through the crushing and sieving method. Exposure of gypsum granules in carbonate and phosphate sources formed BPG through dissolution and precipitation mechanism. BPG was firstly examined by X-ray Diffractometer (XRD) and Fourier Transform Infrared Spectrometer (FTIR) to confirm its phase and chemical composition respectively. In-vitro cell proliferation, alkaline phosphatase (ALP) activity and adhesion of human osteoblast (hFOB) were investigated for osteogenesis evaluation. Degradability in phosphate buffer saline (PBS) was characterized by weight loss whereas apatite mineralization on the BPG surface was examined using Scanning Electron Microscope (SEM). BPG with 300-600 μm and 600-1000 μm enhanced osteogenic differentiation of hFOB and accelerated differentiation process better than 1000-2000 μm as indicated by cell proliferation and ALP activity. Good hFOB adhesion was observed on all BPG surfaces. The weight loss of L and M was 68% and 59%, respectively, which are higher than S at only 32%, indicating faster degradation of large BPG compared to smaller granules upon immersion for 35 days. This in turn, suggested the ionic dissolution of BPG which has contributed to the apatite formation on its surface. The results suggest, the BPG mimicked the bone matrix, exhibited good osteogenesis and degradability, which might be used as a potential candidate for bone tissue engineering.


Author(s):  
Shivaji Kashte ◽  
Gajanan Arbade ◽  
R.K. Sharma ◽  
Sachin Kadam

In the bone tissue engineering composite scaffolds with osteogenic potential are emerging as the new tool. Here, we investigated the graphene (GP), graphene oxide (GO) andCissusquadrangularis(CQ) callus extract for their spontaneous osteoinductive potential. Electrospun poly ε-caprolactone (PCL) sheets were painted with varying combination GP, GO and CQ solutions as ink. The prepared PCL-GO, PCL-GO-CQ, PCL-GP and PCL-GP-CQ scaffolds were characterized for their physical, mechanical and biological properties. Addition of GO, GP, GO-CQ and GP-CQ to PCL enhanced roughness, wettability, Yield strength and tensile strength, biocompatibility .significantly. Presence of GO and CQ in PCL-GO-CQ scaffolds, while GP and CQ in PCL-GP-CQ scaffolds showed synergistic effect on the biocompatibility, Cell attachment,cell proliferation of human umbilical Wharton’s jelly derived mesenchymal stem cells (hUCMSCs) and their differentiation into osteoblasts by 21stday in culture without osteogenic differentiation media or any growth factors. Same is confirmed by the Alizarin red S staining and Von kossa staining. The combination of PCL-GO-CQ scaffold prepared by novel paint method was found to be the most potential in bone tissue engineering.


2009 ◽  
Vol 1235 ◽  
Author(s):  
Junping Wang ◽  
Xiaojun Yu

AbstractIn the previous studies, we have successfully developed a novel spiral structured nanofibrous scaffolds with improved osteoconductivity for bone tissue engineering. The spiral structure design facilitates the nutrient transport and waste removal, and allows uniform cellular growth and distribution within the scaffolds, thus enhanced the bioactivity of the scaffolds. In this chapter, HAP and BMP-2 were incorporated within the nanofibrous spiral scaffolds in order to enhance the osteoinductivity of the established system. The effect of the blending materials was evaluated through cell proliferation, cell differentiation of human osteoblast cells seeded on the scaffolds and cultured for 4 and 8 days. The results has demonstrated that the functionalization of PCL nanofibrous spiral scaffolds leads to higher ALP expression level and increased amount of mineralization level however lower cell proliferation rate.


2016 ◽  
Vol 695 ◽  
pp. 164-169 ◽  
Author(s):  
Woradej Pichaiaukrit ◽  
Wiriya Juwattanasamran ◽  
Teerasak Damrongrungruang

Scaffolds with mechanical properties that mimic the tissue to be restored are critical to maintain the morphology and function of a scaffold after implantation and during tissue regeneration. Silk fibroin (SF), a protein from the Bombyxmori silk worm cocoon, is currently employed in the biomedical field and tissue engineering. The objective of this study was to construct three-dimensional porous silk fibroin/alpha tricalcium phosphate scaffolds for bone tissue engineering application. The scaffolds were fabricated using a solvent casting and salt leaching technique. The hybrid strain of degummed Thai silk fibroin, Nangnoi Srisaket 1 x Mor, was dissolved in hexafluoroisopropanol at 16% (w/v). Alpha tricalcium phosphate (α-TCP) was incorporated to produce 4, 8, 12, and 16 wt% solution and sucrose (particle size 250-450 μm; sucrose/silk fibroin = 8.5/1 w/w) was used as a porogen. The microstructure and pore size, calcium and phosphorus contents, and compressive modulus were evaluated. The scanning electron microscope images revealed the microstructure of scaffolds to be square shaped with continuous interconnected pores. The average pore size of the scaffolds was 265.70 + 67.45 μm. The scaffolds containing 8% (w/w) α-TCP exhibited the highest compressive modulus (64.84 + 16.65 kPa) and the highest calcium content. The results suggested that the scaffolds containing α-TCP may be a potential candidate for application in bone tissue engineering applications.


2020 ◽  
Vol 8 (2) ◽  
pp. 657-672 ◽  
Author(s):  
Feng Wang ◽  
Kai Hou ◽  
Wenjing Chen ◽  
Yuancheng Wang ◽  
Riyuan Wang ◽  
...  

The present study demonstrates fabrication of PDGF-BB functionalized sericin hydrogel to explore biomaterials-related utility in bone tissue engineering.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Xiongfeng Tang ◽  
Yanguo Qin ◽  
Xinyu Xu ◽  
Deming Guo ◽  
Wenli Ye ◽  
...  

For bone tissue engineering, the porous scaffold should provide a biocompatible environment for cell adhesion, proliferation, and differentiation and match the mechanical properties of native bone tissue. In this work, we fabricated porous polyetherimide (PEI) scaffolds using a three-dimensional (3D) printing system, and the pore size was set as 800 μm. The morphology of 3D PEI scaffolds was characterized by the scanning electron microscope. To investigate the mechanical properties of the 3D PEI scaffold, the compressive mechanical test was performed via an electronic universal testing system. For the in vitro cell experiment, bone marrow stromal cells (BMSCs) were cultured on the surface of the 3D PEI scaffold and PEI slice, and cytotoxicity, cell adhesion, and cell proliferation were detected to verify their biocompatibility. Besides, the alkaline phosphatase staining and Alizarin Red staining were performed on the BMSCs of different samples to evaluate the osteogenic differentiation. Through these studies, we found that the 3D PEI scaffold showed an interconnected porous structure, which was consistent with the design. The elastic modulus of the 3D PEI scaffold (941.33 ± 65.26 MPa) falls in the range of modulus for the native cancellous bone. Moreover, the cell proliferation and morphology on the 3D PEI scaffold were better than those on the PEI slice, which revealed that the porous scaffold has good biocompatibility and that no toxic substances were produced during the progress of high-temperature 3D printing. The osteogenic differentiation level of the 3D PEI scaffold and PEI slice was equal and ordinary. All of these results suggest the 3D printed PEI scaffold would be a potential strategy for bone tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document